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Nota Editoriale

Roberto Basili∗
Università di Roma, Tor Vergata

Alessandro Lenci∗∗
Università di Pisa

Bernardo Magnini†
Fondazione Bruno Kessler, Trento

Simonetta Montemagni‡
ILC–CNR, Pisa

Siamo felici di introdurre il nuovo Italian Journal of Computational Linguistics (IJCoL),
la Rivista Italiana di Linguistica Computazionale. La rivista nasce e viene pubblicata
dalla neo-costituita “Associazione Italiana di Linguistica Computazionale” (AILC -
www.ai-lc.it) e, assieme alla conferenza annuale CLIC-it (“Italian Conference on
Computational Linguistics”) e a EVALITA, la campagna di valutazione per le tecnologie
del linguaggio per la lingua italiana scritta e parlata, costituisce uno degli strumenti
principali al servizio della comunità italiana per la promozione e per la diffusione della
ricerca nel campo della linguistica computazionale affrontata da prospettive diverse e
complementari.

L’AILC nasce in un contesto italiano in cui esistono da tempo diverse realtà as-
sociative che operano nell’ambito delle scienze del linguaggio. Alcune di esse hanno
nella linguistica il loro ambito primario, come la “Società Italiana di Glottologia” (SIG),
la “Società di Linguistica Italiana” (SLI), l’ “Associazione Italiana delle Scienze della
Voce” (AISV) e l’ “Associazione Italiana di Linguistica Applicata” (AITLA). Altre invece
hanno una vocazione più spiccatamente informatica, come l’ “Associazione Italiana
di Intelligenza Artificiale” (AI*IA), o collocano il linguaggio all’interno di più ampie
prospettive tematiche, come l’ “Associazione per l’Informatica Umanistica e la Cultura
Digitale” (AIUCD) e l’ “Associazione Italiana di Scienze Cognitive” (AISC). Anche le
riviste italiane in ambito linguistico non mancano. Tra queste, possiamo citare Lingue e
Linguaggio, Studi e Saggi Linguistici e l’ Italian Journal of Linguistics. La rivista Intelligenza
Artificiale ha inoltre spesso ospitato articoli e numeri tematici sul trattamento automatico
del linguaggio.

In questo panorama così ricco e articolato, la domanda spontanea è se fosse neces-
sario creare un’associazione dedicata alla linguistica computazionale. La nostra risposta
è, senza alcuna esitazione, un sì forte e convinto. Il motivo fondamentale è che la
linguistica computazionale presenta caratteri specifici che la rendono comunque au-
tonoma rispetto alle aree ad essa limitrofe. Diversamente dalle associazioni linguistiche,
l’AILC mette al centro dei suoi interessi l’uso dei metodi quantitativi e computazionali

∗ Dipartimento di Ingegneria dell’Impresa - Via del Politecnico 1, 00133 Rome.
E-mail: basili@info.uniroma2.it
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‡ Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC-CNR) - Via Moruzzi 1, 56124, Pisa.
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per lo studio del linguaggio e lo sviluppo di modelli e tecniche per il trattamento
della lingua. Al tempo stesso per AILC è il linguaggio, in tutte le sue manifestazioni,
l’oggetto prioritario di ricerca differenziandosi così da quelle realtà che invece collocano
il linguaggio nei più ampi domini della modellazione computazionale dell’intelligenza,
delle scienze cognitive o dell’informatica applicata alle discipline umanistiche. Autono-
mia non significa chiusura o separazione. Siamo anzi convinti che AILC dovrà e saprà
dialogare con tutte le altre associazioni e realtà interessate al linguaggio e alle lingue
naturali. Al tempo stesso, rivendichiamo però un spazio di specificità della linguistica
computazionale, che ha bisogno dunque dei suoi spazi di rappresentanza.

Il nuovo Italian Journal of Computational Linguistics colma un duplice vuoto, sul
versante nazionale e internazionale. Nel panorama editoriale della comunità scientifica
italiana, dopo l’esperienza di Linguistica Computazionale, fondata nel 1981 da Antonio
Zampolli e non più pubblicata dal 2006, è venuto a mancare del tutto un forum autorev-
ole in cui rappresentare le diverse anime della linguistica computazionale in Italia. Lin-
guistica Computazionale era espressione di una singola istituzione, l’Istituto di Linguistica
Computazionale del CNR, storicamente il primo centro dedicato alla linguistica com-
putazionale a livello nazionale. Oggi, come testimoniato dalla fondazione dell’AILC
che riunisce la comunità italiana che opera nel settore, il panorama in Italia è profonda-
mente cambiato, i gruppi di ricerca che si occupano di linguistica computazionale sono
numerosi, si estendono su tutto il territorio nazionale e operano sia nell’area umanistica
che in quella informatica. Ciò ha reso ancora più urgente la necessità di una rivista che
fosse l’espressione della pluralità di voci all’interno della neo-costituita associazione.
Questa mancanza è tanto più evidente se consideriamo l’alta reputazione e la visibilità
internazionale che la ricerca italiana si è guadagnata nel nostro campo. Sempre sul
versante nazionale, IJCoL colma un vuoto evidente ormai da troppo tempo rispetto a
iniziative analoghe in altri paesi europei. Pensiamo, ad esempio, alla tradizione e al
ruolo che hanno riviste come Traitement Automatique des Langues (TAL) per la comunità
francese, Procesamiento del Lenguaje Natural (PLN) per la comunità spagnola, o Journal for
Language Technology and Computational Linguistics (JLCL) per quella tedesca. Sul versante
internazionale, IJCoL intende contribuire a rafforzare la presenza di riviste del settore
della linguistica computazionale, al momento ancora esigua.

Vorremmo che IJCoL fosse riconosciuto come uno strumento per la pubblicazione
di risultati di qualità e ottenuti con rigore metodologico, anche quando questi contributi
faticano a trovare spazi adeguati in sedi internazionali, vuoi per la scarsità di opportu-
nità in campo editoriale nel nostro settore, vuoi perché non sempre risultati di rilievo
ottenuti per la lingua italiana sono valorizzati sufficientemente a livello internazionale.
Vorremmo uno spazio di discussione aperto, particolarmente ai contributi di giovani
ricercatori, in cui poter riportare esperienze, risultati teorici e sperimentali in uno spirito
di confronto continuo, avendo consapevolezza della complessità delle sfide scientifiche
e tecnologiche che la linguistica computazionale è chiamata oggi ad affrontare.

Con questo spirito, la rivista intende coprire un ampio spettro di temi che ruotano
attorno a linguaggio e computazione affrontato da prospettive diverse che includono
ma non si limitano a: trattamento automatico del linguaggio (scritto e parlato), ap-
prendimento automatico del linguaggio, modelli computazionali del linguaggio, della
cognizione e della variazione linguistica, acquisizione di conoscenza, costruzione di
risorse linguistiche, sviluppo di infrastrutture per l’interoperabilità e l’integrazione di
risorse e tecnologie linguistiche, per arrivare a temi con una forte valenza applicativa
come ad esempio Information Extraction, Question Answering, sommarizzazione auto-
matica e traduzione automatica. In particolare, la rivista intende proporsi come forum
aggiornato di discussione della comunità dei ricercatori che operano nel settore della
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linguistica computazionale da prospettive diverse, anche con l’obiettivo di creare un
ponte tra i risultati che emergono nelle diverse aree del trattamento automatico del
linguaggio e altre discipline, da quelle che con la linguistica computazionale condivi-
dono l’oggetto di studio, ovvero le lingue e il linguaggio nelle loro varie manifestazioni
(ad esempio, la linguistica, la linguistica italiana, la sociolinguistica, la dialettologia,
la filologia), a quelle che con essa condividono metodi di elaborazione e analisi come
l’informatica e l’intelligenza artificiale, per arrivare a quelle che possono beneficiare
di risorse e tecnologie linguistiche per l’accesso e la gestione delle proprie basi doc-
umentali. Particolare attenzione sarà dedicata da un lato alle neuroscienze cognitive,
nelle quali la modellazione computazionale ha da sempre un ruolo centrale, e dall’altro
al contributo della linguistica computazionale all’interno del più ampio settore delle
Digital Humanities, di antica tradizione a livello nazionale ed oggi in pieno sviluppo.

Il bacino d’utenza della rivista è rappresentato dalla comunità scientifica di ricerca
della linguistica computazionale in ambito sia accademico che industriale a livello
nazionale e internazionale, e potrà anche includere potenziali “stakeholders” interessati
ad applicazioni basate su risorse e tecnologie per il trattamento automatico del linguag-
gio.

La struttura scientifico-editoriale della rivista è articolata come segue:

� la Direzione scientifica, composta da due Co-Direttori rappresentanti delle anime
umanistica e informatica della linguistica computazionale italiana, che avrà il
compito di verificare la qualità scientifica, il rispetto degli obiettivi e la coerenza
della linea editoriale della rivista e si occuperà della sua promozione a livello
nazionale e internazionale;� il Comitato Scientifico, composto da rappresentanti della comunità nazionale e
internazionale della linguistica computazionale e selezionati in qualità di esperti
delle principali aree di interesse della rivista. La funzione del Comitato Scientifico
sarà di indirizzo e supervisione della linea editoriale della rivista;� il Comitato Editoriale, composto da rappresentanti della comunità nazionale della
linguistica computazionale afferente all’AILC e delle diverse aree di competenza,
con la funzione di definire la politica editoriale della rivista, supervisionare la
valutazione di merito degli articoli proposti e di coordinare l’attività editoriale;� la Segreteria di Redazione, composta da rappresentanti di diverse istituzioni coin-
volte in AILC, che fornirà un supporto operativo al Comitato Editoriale.

IJCoL nasce come rivista peer–reviewed con cadenza semestrale e gratuitamente
consultabile e scaricabile on–line nel rispetto dei requisiti dell’Open Access, una scelta
che vuole favorire il più largo accesso possibile da parte di tutti gli interessati, in
quell’ottica di inclusione che guida l’AILC. L’obiettivo a medio–lungo termine è di
avere la rivista collocata in fascia “A” per le aree scientifico–disciplinari rilevanti della
classificazione ANVUR a livello nazionale (ovvero, L–LIN/01, INF/01, ING–INF/05),
e indicizzata nei principali database internazionali per i settori coperti dalla rivista (tra
questi, Scopus Bibliographic Database, ERIH Plus, Google Scholar, Web of Science).

Siamo consapevoli che il compito che ci aspetta non è semplice. I modi della
ricerca scientifica stanno rapidamente cambiando, e per una rivista nuova non sarà
facile guadagnare e mantenere prestigio e autorevolezza. La strada per questi obiettivi
ambiziosi passa necessariamente dall’impegno e dalla passione di chi dovrà guidare la
realizzazione della rivista, ma anche dal coinvolgimento attivo della comunità scien-
tifica interessata, da varie prospettive, alla linguistica computazionale e al trattamento
automatico del linguaggio.
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Questo volume è il primo di una serie con cui la rivista seguirà la ricerca e i risultati
principali della comunità italiana e internazionale della linguistica computazionale. Nel
primo numero, abbiamo deciso di concentrarci sui migliori articoli firmati da giovani
ricercatori della Conferenza CLIC-it 2014, tenutasi a Pisa il 9 e 10 dicembre 2014. Questi
articoli sono stati selezionati tra tutte le aree tematiche della conferenza, in modo da
essere rappresentativi dei vari interessi scientifici della nostra comunità, in particolare
dei suoi più giovani protagonisti. Gli articoli di questo numero, selezionati attraverso
un processo di peer–review, sono stati valutati ulteriormente durante i lavori della Con-
ferenza: questo processo ha portato all’assegnazione dei premi di “Best Young Paper”
e “Distinguished Young Papers”. Gli autori insigniti di tali riconoscimenti sono stati
invitati a sottomettere una versione rivista ed estesa del loro contributo alla conferenza,
che è stato oggetto di un’ulteriore valutazione. Il risultato è un numero della rivista
che rappresenta linee di ricerca originali e innovative all’interno della comunità della
linguistica computazionale italiana, ma non soltanto.

I lavori qui raccolti possono essere ripartiti in quattro aree tematiche generali. In
una prima area collochiamo il lavoro di Ferrone e Zanzotto, il cui obiettivo principale è
la modellizzazione matematica di informazioni linguistiche di livello lessicale o frasale.
Questo lavoro discute come l’integrazione di rappresentazioni grammaticali distribuite,
in genere veicolate tramite i cosiddetti “tree kernel”, con modelli composizionali possa
essere realizzata in processi di apprendimento automatico di tipo linguistico. Il lavoro
propone un paradigma unificato che enfatizza al contempo la conoscenza grammaticale
e lessicale così come l’algoritmica induttiva ed una rigorosa modellazione matematica.

In un secondo gruppo, troviamo lavori sulla semantica lessicale, nella prospettiva
specifica dei modelli di rappresentazione vettoriale, ispirati alla ricerca nella semantica
distribuzionale. Il lavoro di Sayeed e dei suoi colleghi esplora l’uso di rappresentazioni
tensoriali nello studio del cosiddetto “thematic fit”, ovvero il grado di congruenza di un
argomento rispetto ai vincoli semantici imposti dall’evento espresso da un predicato.
Un elemento originale di questo lavoro è la costruzione di uno spazio vettoriale che
integra informazione sui ruoli semantici ottenuta attraverso SENNA, un’architettura di
deep learning per il semantic role labeling.

Il lavoro di Santus et al. studia metodi distribuzionali nella modellazione della
opposizione semantica tra i sensi lessicali, fenomeno particolarmente complesso per i
modelli distribuzionali. Il lavoro propone APAnt, una misura di (dis)similarità basata
sull’assunzione che gli opposti sono simili dal punto di vista distribuzionale ma
esprimono differenze tra loro in almeno una delle dimensioni semantiche salienti.
Nell’esaustiva analisi sperimentale discussa nell’articolo, si mostra come APAnt
migliori le misure di metodi precedentemente pubblicati nel task di riconoscimento di
antonimi.

Il lavoro di Basile et al. propone l’uso del Random Indexing (RI) nello studio della
evoluzione diacronica del senso delle parole in corpora che coprono ampi periodi
storici. Nell’articolo viene presentato il metodo di Temporal Random Indexing per la
acquisizione di spazi di parole dipendenti dal tempo e di esso viene discussa la speri-
mentazione su due corpora rappresentativi di periodi diversi: una collezione di libri in
italiano e i lavori scientifici in lingua inglese nell’area della linguistica computazionale.

Un terzo gruppo di lavori si focalizza sull’applicazione dell’elaborazione della lingua nel
riconoscimento automatico delle opinioni e delle emozioni nei testi e, in particolare, nelle Reti
Sociali.

Il lavoro di Castellucci e dei suoi colleghi discute un approccio basato
sull’apprendimento strutturato nel riconoscimento di opinioni nei messaggi su Twitter.
Qui vengono integrate tecniche di semantica distribuzionale e di apprendimento basato
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su “kernel” all’interno di un metodo di classificazione delle opinioni nei microblog
sensibile al contesto attraverso una formulazione markoviana di una Support Vector
Machine. La sperimentazione condotta su Italiano ed Inglese mostra come il modello
migliori i risultati di approcci non strutturati precedentemente proposti in letteratura.

Metodi quantitativi applicati alla semantica lessicale caratterizzano anche
l’applicazione dell’elaborazione linguistica al riconoscimento di tematiche ed emozioni
negli scenari delle Social TV, come discusso nel lavoro di Tarasconi e Di Tomaso. Essi
propongono l’analisi delle corrispondenze multiple come strumento per lo studio delle
dipendenze tra temi di discussione ed emozioni. La valutazione sperimentale discute
dati estratti da Twitter tra l’ottobre 2013 ed il febbraio 2014, dimostrando l’efficacia e la
relativa semplicità di applicazione del metodo.

L’ultima sezione del volume include interessanti esperienze di applicazione di
metodi e tecniche della linguistica computazionale nell’ambito di discipline umanis-
tiche, quali la pedagogia sperimentale e lo studio delle lingue classiche.

Il lavoro di Barbagli et al. è focalizzato sull’uso di tecnologie del linguaggio per
l’analisi dei processi di apprendimento. Il contributo riporta i primi risultati di uno
studio interdisciplinare a cavallo tra linguistica computazionale, linguistica e pedagogia
sperimentale finalizzato al monitoraggio dell’evoluzione del processo di apprendi-
mento della lingua italiana come L1. Tale studio condotto con strumenti di annotazione
linguistica automatica ha portato all’identificazione di un insieme di tratti caratteriz-
zanti l’evoluzione del processo di apprendimento linguistico, con potenziali e interes-
santi ricadute applicative sul versante scolastico ed educativo.

Chiude il volume l’articolo di De Felice et al. che illustra la progettazione e lo
sviluppo di un’innovativa risorsa digitale per l’epigrafia latina, contenente un cor-
pus di iscrizioni latine annotato con informazioni di varia natura (linguistiche, socio-
linguistiche e metalinguistiche). L’articolo illustra l’annotazione della prima macro–
sezione del corpus relativa a iscrizioni latine del periodo arcaico, che crea i presupposti
per raffinate analisi sociolinguistiche del latino preclassico di natura qualitativa e quan-
titativa a partire da attestazioni epigrafiche.

La breve vista d’insieme sin qui discussa non può coprire i così tanti aspetti di inter-
esse dei lavori citati, e lascia al lettore l’onere, unito speriamo al piacere, di approfondirli
direttamente negli articoli in questo volume. In ogni caso, essi ci mostrano con chiarezza
l’ampiezza e la granularità dei contributi stimolati dalla prima “Conferenza italiana di
Linguistica Computazionale”, CLIC-it 2014. Come suo risultato diretto, dunque, questo
numero della rivista è un ulteriore segno tangibile del potenziale esibito regolarmente
dalla comunità italiana, che contribuisce in modo significativo alla dimensione inter-
nazionale della ricerca in inguistica computazionale.
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Editorial Note Summary

We are pleased to announce the new Italian Journal of Computational Linguistics (IJCoL),
in Italian Rivista Italiana di Linguistica Computazionale. The journal is published by the
newly founded Italian Association of Computational Linguistics (AILC - www.ai-lc.
it). Together with the annual conference CLIC-it (“Italian Conference on Computa-
tional Linguistics”) and the EVALITA evaluation campaign specifically devoted to Nat-
ural Language Processing and Speech tools for Italian, this journal is intended to meet
the need for a national and international forum for the promotion and dissemination of
high-level original research in the field of Computational Linguistics (CL).

The journal intends to fill a twofold gap, at the national and international levels. Af-
ter the journal Linguistica Computazionale founded in 1981 by Antonio Zampolli and no
longer published since 2006, Italy needed an authoritative forum for researchers work-
ing in CL from different and complementary perspectives. Today, the Italian Association
for Computational Linguistics brings together the Italian community of CL researchers:
the research groups working in this area are numerous, extend over the entire national
territory, operate in both academic and industrial environments, in humanistic and/or
computer science departments. In this context, a journal which was the expression of the
plurality of voices within the newly founded Italian association was urgently needed.
IJCoL aims at playing the role of journals like Traitement Automatique des Langues (TAL)
for the French community, or Procesamiento of Lenguaje Natural (PLN) for the Spanish
community, or Journal for Computational Linguistics and Language Technology (JLCL) for
the German one. This lack is even more evident if we consider the high reputation
and visibility gained by Italian CL research at the international level. On such a front,
IJCoL aims at increasing the still low presence of journals in the area of Computational
Linguistics.

We would like IJCoL to publish the results of high–quality methodologically–sound
research, which sometimes is struggling to find adequate space in international fora,
due either to the limited number of editorial possibilities or to the fact that results
obtained for the Italian language are not always properly valued at the international
level. We would like IJCoL to be an open space for discussion, particularly by young
researchers bringing in experiences, theoretical and experimental results in a continuous
dialogue, being aware of the complexity of the scientific and technological challenges
that CL is called to face today.

IJCoL intends to cover a broad spectrum of topics related to natural language and
computation tackled from different perspectives, including but not limited to: natural
language and speech processing, computational natural language learning, computa-
tional modelling of language and language variation, linguistic knowledge acquisition,
corpus development and annotation, design and construction of computational lexi-
cons, up to more applicative perspectives such as information extraction, ontology engi-
neering, summarization, machine translation and, last but not least, digital humanities.
In particular, a central aim of the journal will be to provide a channel of communication
among researchers from multiple perspectives, by bridging the gap between the results
emerging in the different areas of natural language processing and other disciplines,
ranging from theoretical or descriptive linguistics, cognitive psychology, philosophy,
philology or neuroscience and computer science.

The intended audience of the journal typically includes academic and industrial
researchers in the areas listed above, but also “stakeholders” such as educators, public
administrators and all potential users interested in applications making use of linguistic
technologies.
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The Italian Journal of Computational Linguistics will be an open–access peer–reviewed
journal published online twice a year; each volume is expected to be around 120 pages.
The journal will alternate miscellaneous volumes and special issues aimed at showcas-
ing research focused on particularly crucial topics. In addition to full articles, the journal
will also publish shorter notes and book reviews.

IJCoL is guided by different boards as detailed below:

� two Editors in Chief, representing the humanistic and computer science sides of
Italian CL;� the Advisory Board, which includes distinguished scholars drawn from leading
CL research groups around the world selected as experts of hot areas of CL
research;� the Editorial Board, including representatives of the Italian national CL commu-
nity and of different competence areas;� the Editorial Office.

The first volume of the journal opens the series that we will dedicate to monitor the
research and main achievements of the Italian and international CL community. As a
starting point, we decided to focus on the best papers of the CLIC-it 2014 Conference
held in December 2014 in Pisa, along two major motivations. First, the research work
involved by this choice was inherently representative of the entire community, with its
interests, major paradigms and achievements. Second, the papers, early selected on the
basis of the CLIC-it 2014 peer-review, have been further evaluated, at the Conference, as
candidates for the best paper award and their revised versions have undergone a second
round of reviewing. For the variety of topics covered and for the general quality of the
papers, we can say that the volume successfully sheds light on several interesting active
research trends and contributes to their main challenges. The works here collected can
be grouped into four major areas, sketched below.

Mathematical modeling of linguistic information. The paper by Ferrone and Zanzotto
focuses on the mathematical modeling of linguistic information at the sentence and
lexical levels. In particular, it discusses how the integration of grammatical represen-
tations supporting specific kernels, the so–called “tree kernels”, with compositionality
operators can be effectively applied in computational natural language learning. The
proposed rich mathematical formalization emphasizes the role of grammatical and
lexical knowledge within a unifying inductive process.

Distributional Semantics. This second group gathers contributions whose major focus is
on lexical semantics as studied within the light of vector space models, inspired by
research in Distributional Semantics. The work by Sayeed et al. explores tensor based
representations in the study of so–called “thematic fit”, i.e. the strength by which an
entity fits a thematic role in the semantic frame of an event. The adoption of a strict
semantic view in the unsupervised acquisition of a distributional space (here called
SDDM) provides a promising complementary alternative to existing methods based on
syntactic information. The study is based on SENNA, a deep learning based architecture
for semantic role labeling.

The work by Santus et al. explores distributional methods for the study of the
semantic opposition between lexical senses, representing a complex phenomenon for
distributional models. The work discusses APAnt, a (dis)similarity measure, assuming
that opposites can be distributionally similar but must be different from each other in

7
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at least one salient dimension of meaning. In an extensive evaluation discussed in the
paper, APAnt is shown to outperform existing baselines in an antonym retrieval task.

The work by Basile and colleagues focuses on the use of Random Indexing (RI)
for studying the temporal evolution of word senses over corpora covering long time
periods. Interestingly, RI supports a unified representation of vectors for different word
distributions that can be acquired over different time spans. In the paper, the Temporal
Random Indexing method for building WordSpaces that accounts for temporal infor-
mation is correspondingly presented and experimented over two corpora: a collection
of Italian books and English scientific papers about CL.

Automatic recognition of opinions and emotions in corpora and Social Networks. A third group
of papers clusters around applications of language analysis to the automatic recognition
of opinions and emotions in corpora and Social Networks. In particular, the paper by
Castellucci et al. focuses on a structured learning approach for the recognition of opin-
ions over microblogging messages of Twitter. Methods for distributional vector-based
lexical representations and kernel-based learning are integrated within a context-aware
opinion classification method. The task of recognizing the polarity of a message is here
mapped into a tweet sequence labeling task. A Markovian formulation of the Support
Vector Machine discriminative approach is applied and reported empirical validation
shows how it outperforms existing methods for polarity detection over Italian and
English data.

Quantitative methods for lexical semantics also characterize the application of com-
plex language processing chains to the recognition of topics and emotions in Social TV
scenarios, as discussed in the paper by Tarasconi and Di Tomaso. They propose Multiple
Correspondence Analysis as a tool for studying how audiences share their feelings and
representing these similarities in a sound and compact manner. The reported empirical
investigation discusses Twitter data extracted between October 2013 and February 2014
showing the effectiveness and viability of the method.

Application of language processing methods in Digital Humanities. The last group of papers
focuses on the application of natural language processing methods in digital human-
ities, such as education, epigraphy and sociolinguistics. The paper by Barbagli et al.
shows that nowadays the use of language technologies can be successfully extended to
the study of learning processes. The paper reports some first results of an interdisci-
plinary study, as part of a broader experimental pedagogy project, aimed at monitoring
the evolution of the learning process of the Italian language based on a corpus of written
productions by students, which has been analyzed with automatic linguistic annotation
and knowledge extraction tools. Achieved results are very promising and led to the
identification of linguistic features qualifying the evolution of language acquisition.

The paper by De Felice and colleagues presents CLaSSES (Corpus for Latin Soci-
olinguistic Studies on Epigraphic textS), an annotated corpus aimed at (socio)linguistic
research on Latin inscriptions: in particular, it illustrates the first macro-section of
CLaSSES, including inscriptions of the archaic and early periods (CLaSSES I). Anno-
tated with linguistic, extra- and meta-linguistic features, the corpus can be used to
perform quantitative and qualitative variationist analyses on Latin epigraphic texts: it
allows the user to analyze spelling (and possibly phonetic-phonological) variants and
to interpret them with reference to time, location and text type.

8
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Our synthetic and overall view does not exhaust the wide range of issues explored
by the papers and leaves the reader the burden, and, hopefully, the pleasure, discover
them in the rest of the volume. However, it clearly shows the width and depth of the
contributions produced by the CLIC-it 2014 Conference. As a by product of its lively
and vital activity, this volume is a further proof of the potentials that the Italian research
regularly shows, thus contributing to the world-wide dimensions of the CL research.
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Distributed Smoothed Tree Kernel

Lorenzo Ferrone ∗

Università di Roma, Tor Vergata
Fabio Massimo Zanzotto ∗∗

Università di Roma, Tor Vergata

In this paper we explore the possibility to merge the world of Compositional Distributional
Semantic Models (CDSM) with Tree Kernels (TK). In particular, we will introduce a specific
tree kernel (smoothed tree kernel, or STK) and then show that is possibile to approximate such
kernel with the dot product of two vectors obtained compositionally from the sentences, creating
in such a way a new CDSM.

1. Introduction

Compositional distributional semantics is a flourishing research area that leverages
distributional semantics (see (Baroni and Lenci 2010)) to produce meaning of simple
phrases and full sentences (hereafter called text fragments). The aim is to scale up the
success of word-level relatedness detection to longer fragments of text. Determining
similarity or relatedness among sentences is useful for many applications, such as
multi-document summarization, recognizing textual entailment (Dagan et al. 2013), and
semantic textual similarity detection (Agirre et al. 2013). Compositional distributional
semantics models (CDSMs) are functions mapping text fragments to vectors (or higher-
order tensors). Functions for simple phrases directly map distributional vectors of
words to distributional vectors for the phrases (Mitchell and Lapata 2008; Baroni and
Zamparelli 2010; Zanzotto et al. 2010). Functions for full sentences are generally defined
as recursive functions over the ones for phrases (Socher et al. 2011). Distributional
vectors for text fragments are then used as input in larger machine learning algorithm,
for example as layers in neural networks, or to compute similarity among text fragments
directly via dot product or cosine similarity.

CDSMs generally exploit structured representations tx of text fragments x to derive
their meaning, in the form of a vector of real number f(tx). The structural information,
although extremely important, is only used to guide the composition process, but it
is obfuscated in the final vectors. Structure and meaning can interact in unexpected
ways when computing cosine similarity (or dot product) between vectors of two text
fragments, as shown for full additive models in (Ferrone and Zanzotto 2013).

Smoothed tree kernels (STK) are instead a family of kernels which realize a clearer
interaction between structural information and distributional meaning (Croce, Mos-
chitti, and Basili 2011; Mehdad, Moschitti, and Zanzotto 2010). STKs are specific realiza-
tions of convolution kernels (Haussler 1999) where the similarity function is recursively
(and, thus, compositionally) computed. Distributional vectors are used to represent
word meaning in computing the similarity among nodes. STKs, however, are not con-
sidered part of the CDSMs family, in fact, as usual in kernel machines (Cristianini and
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Shawe-Taylor 2000), STKs directly compute the similarity between two text fragments
x and y over their tree representations tx and ty , that is, STK(tx, ty). Because STK is a
valid kernel, there exist a function f : T → Rn such that:

STK(tx, ty) = 〈f(tx), f(ty)〉

However, the function f that maps trees into vectors is never explicity used, and,
thus, STK(tx, ty) is not explicitly expressed as the dot product or the cosine between
f(tx) and f(ty).

Such a function f , which is the underlying reproducing function of the kernel
(Aronszajn 1950), would be a CDSM in its own right, since it maps trees to vectors, also
including distributional meaning. However, the huge dimensionality of Rn (since it has
to represent the set of all possible subtrees) prevents to actually compute the function
f(t), which thus can only remain implicit.

Distributed tree kernels (DTK) (Zanzotto and Dell’Arciprete 2012a) partially solve
the last problem. DTKs approximate standard tree kernels (such as (Collins and Duffy
2002)) by defining an explicit function DT that maps trees to vectors in Rm where m � n
and Rn is the explicit space for tree kernels. DTKs approximate standard tree kernels
(TK), that is,

〈DT (tx), DT (ty)〉 ≈ TK(tx, ty)

by approximating the corresponding reproducing function. In this sense distributed
trees are low-dimensional vectors that encode structural information. In DTKs tree
nodes u and v are represented by nearly orthonormal vectors, that is, vectors u and
v such that: 〈u,v〉 ≈ δ(u,v) where δ is the Kroneker’s delta function, defined as:

δ(u,v) =

{
1 if u = v

0 if u �= v

This is in contrast with distributional semantics vectors where the dot product 〈u,v〉 is
allowed to take on any value in [0, 1] according to the semantic similarity between the
words u and v.

In this paper, leveraging on distributed trees, we present a novel class of CDSMs
that encode both structure and distributional meaning: the distributed smoothed trees
(DST). DSTs encode both structure and distributional meaning in a rank-2 tensor (a
matrix): one dimension encodes the structure and one dimension encodes the meaning.
By using DSTs to compute the similarity among sentences with a generalized dot
product (or cosine), we implicitly define the distributed smoothed tree kernels (DSTK)
which approximate the corresponding STKs.

We present two DSTs along with the two smoothed tree kernels (STKs) that they
approximate.

We experiment with our DSTs to show that their generalized dot products ap-
proximate STKs by directly comparing the produced similarities and by comparing
their performances on two tasks: recognizing textual entailment (RTE) and semantic
similarity detection (STS). Both experiments show that the dot product on DSTs ap-
proximates STKs and, thus, DSTs encode both structural and distributional semantics
of text fragments in tractable rank-2 tensors. Experiments on STS and RTE show that

2
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distributional semantics encoded in DSTs increases performance over structure-only
kernels.

DSTs are the first positive way of taking into account both structure and distribu-
tional meaning in CDSMs.

The rest of the paper is organized as follows. Section 2 introduces the necessary
background on distributed trees (Zanzotto and Dell’Arciprete 2012a) used in the rest
of the paper, 3.1 introduces the basic notation used in the paper. Section 3 describe our
distributed smoothed trees as compositional distributional semantic models that can
represent both structural and semantic information. Section 5 reports on the experi-
ments. Finally, Section 6 draws some conclusions and possibilities for future works.

2. Background: DTK

Encoding Structures with Distributed Trees (Zanzotto and Dell’Arciprete 2012b) (DT)
is a technique to embed the structural information of a syntactic tree into a dense, low-
dimensional vector of real numbers. DT were introduced in order to allow one to exploit
the modelling capacity of tree kernels (Collins and Duffy 2001) but without their com-
putational complexity. More specifically for each tree kernel TK (Aiolli, Da San Martino,
and Sperduti 2009; Collins and Duffy 2002; Vishwanathan and Smola 2002; Kimura et
al. 2011) there is a corresponding distributed tree function (Zanzotto and Dell’Arciprete
2012b) which maps from trees to vectors:

DT : T → Rd

t �→ DT(t) = t

such that:

〈DT(t1),DT(t2)〉 ≈ TK(t1, t2) (1)

where t ∈ T is a tree, 〈·, ·〉 indicates the standard inner product in Rd and TK(·, ·) rep-
resents the original tree kernel. It has been shown that the quality of the approximation
depends on the dimension d of the embedding space Rd.

To approximate tree kernels, distributed trees use the following property and in-
tuition. It is possible to represent subtrees τ ∈ S(t) of a given tree t in distributed tree
fragments DTF(τ) ∈ Rd such that:

〈DTF(τ1),DTF(τ2)〉 ≈ δ(τ1, τ2) (2)

Where δ is the Kronecker’s delta function. With this definition we can define the dis-
tributed tree of a given tree t as a summation over all of its subtrees, that is:

DT(t) =
∑

τ∈S(t)

√
λ
|N (τ)|

DTF(τ)

where λ is the classical decaying factor in tree kernels (Collins and Duffy 2002), used to
penalize the importance given to longer tree, and |N (τ)| is the cardinality of the set of
the nodes of the subtree τ . With this definition in place one can show that the property
in Equation 1 holds.

3
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Distributed tree fragments are defined as follows. To each node label n we associate
a random vector n drawn randomly from the d-dimensional hypersphere. Random
vectors of high dimensionality have the property of being quasi-orthonormal (that
is, they obey a relationship similar to equation (2)). The following functions are then
defined:

DTF(τ) =
⊙

n∈N (τ)

n

where � indicates the shuffled circular convolution operation 1, which has the property
of preserving quasi-orthonormality between vectors.

To actually compute distributed trees in an efficient manner however, a different
(equivalent) formulation is used. Firstly we define a function SN(n) for each node n in
a tree t that collects all the distributed tree fragments of t, where n is its head:

SN(n) =

{
0 if n is terminal
n�

⊙
i

√
λ [ni + SN(ni)] otherwise

(3)

where ni are the direct children of n in the tree t. Given S(n), distributed trees can be
efficiently computed as:

DT(t) =
∑
n∈N

SN(n)

In the next section we will finally generalize the ideas of DTK in order to also
include semantic information.

3. Distributed Smoothed Tree Kernel

We here propose a model that can be considered a compositional distributional semantic
model as it transforms sentences into matrices (which can also be seen as vectors,
once they have been "flattened") that can then used by the learner as feature vectors.
Our model is called Distributed Smoothed Tree Kernel (Ferrone and Zanzotto 2014) as it
mixes the distributed trees which we introduced in the previous section (Zanzotto and
Dell’Arciprete 2012a) representing syntactic information with distributional semantic
vectors representing semantic information, as used in the smoothed tree kernels (Croce,
Moschitti, and Basili 2011).

3.1 Notation

Before describing the distributed smoothed trees (DST) we introduce a formal way to
denote constituency-based lexicalized parse trees, as DSTs exploit this kind of data struc-
tures.

Lexicalized trees are denoted with the letter t and N(t) denotes the set of non terminal
nodes of tree t. Each non-terminal node n ∈ N(t) has a label ln composed of two parts

1 The circular convolution between a and b is defined as the vector c with component
ci =

∑
j ajbi−j mod d. The shuffled circular convolution is the circular convolution after the vectors have

been randomly shuffled.
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S:booked::v
�����

�����
NP:we::p

PRP:we::p

We

VP:booked::v
�����

�����
V:booked::v

booked

NP:flight::n
���

���
DT:the::d

the

NN:flight::n

flight
Figure 1
A lexicalized tree

S(t) = {
S:booked::v

����
NP VP

,
VP:booked::v

����
V NP

,
NP:we::p

PRP

,

S:booked::v
����

NP

PRP

VP , . . . ,

VP:booked::v
�
��

�
��

V

booked

NP
����

DT NN

, . . . }

Figure 2
Subtrees of the tree t in figure (1) (a non-exhaustive list)

ln = (sn, wn): sn is the syntactic label, (for example NP, VP, S, and so forth) while wn is
the semantic headword of the tree headed by n, along with its part-of-speech tag. The
semantic headwords are derived with the Stanford Parser implementation of Collins’
rules (Collins 1999).

Terminal nodes of trees are treated differently, these nodes represent only words wn

without any additional information, and their labels thus only consist of the word itself.
An example of such a structure can be seen in figure (1).

The structure of a DST is represented as follows: Given a tree t, we will use h(t) to
indicate its root node and s(t) to indicate its syntactic part. That is, s(t) is the tree derived
from t but considering only the syntactic structure (that is, only the sn part of the labels).
For example the tree in figure (1) is mapped to the tree:

S
���

���
NP

PRP

We

VP
���

���
V

booked

NP
����

DT

the

NN

flight
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We will also use ci(n) to denote i-th child of a node n. As usual for constituency-
based parse trees, pre-terminal nodes are nodes that have a single terminal node as
child. Finally, we use wn ∈ Rk to denote the distributional vector for word wn.

3.2 The method at a glance

We describe here the approach in a few sentences. In line with tree kernels over struc-
tures (Collins and Duffy 2002), we introduce the set S(t) of the subtrees ti of a given
lexicalized tree t. A subtree ti is in the set S(t) if s(ti) is a subtree of s(t) and, if n is
a node in ti, all the siblings of n in t are in ti. For each node of ti we only consider
its syntactic label sn, except for the head h(ti) for which we also consider its semantic
component wn (see Fig. 2).

In analogy with equation (2) the functions DSTs we define compute the following
sum:

DST(t) = T =
∑

ti∈S(t)

Ti

where Ti is the matrix associated to each subtree ti (how this matrix is computed will
be explained in the following).

The similarity between two text fragments a and b represented as lexicalized trees
ta and tb can be then computed using the Frobenius product between the two matrices
Ta and Tb, that is:

DSTK(ta, tb)) = 〈Ta,Tb〉F =
∑

tai ∈S(ta)

tbj∈S(tb)

〈Ta
i ,Tb

j〉F (4)

This is nothing more than the usual dot product between two vectors, if we flatten the
two m× k matrices into two vectors, each with mk components.

We want to generalize equation (2), and obtain that the product 〈Ta
i ,Tb

j〉F approxi-
mates the following similarity between lexicalized trees:

〈Ta
i ,Tb

j〉F ≈

{
〈wh(tai )

,wh(tbj)
〉 if s(tai ) = s(tbj)

0 otherwise

In other words, whenever two subtrees have the same syntactic structure, we define
their similarity as the semantic similarity of their heads (as computed via dot product
of the corresponding distributional vectors), when their syntactic structure is different
we instead define their similarity to be 0.

This definition can also be written as:

〈Ta
i ,Tb

j〉F ≈ δ(s(tai ), s(t
b
j)) · 〈wh(tai )

,wh(tbj)
〉 (5)

In order to obtain the above approximation property, we define:

Ti = s(ti)⊗wh(ti)

6
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where s(ti) are distributed tree fragment (Zanzotto and Dell’Arciprete 2012a) for the
subtree t, wh(ti) is the distributional vector of the head of the subtree t and ⊗ denotes
the tensor product. In this particular case, the tensor product is equivalent to the matrix
s(ti)w

�
h(ti)

, between a column vector and a row vector.
Exploiting the following properties of the tensor and Frobenius product:

〈a⊗w,b⊗ v〉F = 〈a,b〉 · 〈w,v〉

we have that Equation (5) is satisfied as:

〈Ti,Tj〉F = 〈s(ti), s(tj)〉 · 〈wh(ti),wh(tj)〉

≈ δ(s(ti), s(tj)) · 〈wh(ti),wh(tj)〉

As in the distributed trees, it is possible to introduce a different formulation to
compute DST(t). Such formulation has the advantage of being more computationally
efficient, and also makes it clear that the process is compositional in nature, because it
composes distributional and distributed vector of each node.

More specifically, it can be shown that:

DST(t) =
∑
n∈N

SN*(n)

where SN∗ is defined as:

SN*(n) =

{
0 if n is terminal
SN(n)⊗wn otherwise

and S(n) is the same as in equation (3).
It is possible to show that the overall compositional distributional model DST(t)

can be obtained with a recursive algorithm that exploits vectors of the nodes of the tree.
We actually propose two slightly different versions of our DSTs according to how

we produce distributional vectors for words. We have a plain version DST0 when we
use distributional vectors wn as they are, and a slightly modified version DST+1 when
we use as distributional vectors wn

′ =
(
1 wn

)
.

4. The Approximated Smoothed Tree Kernels

The two CDSM we propose approximate two specific tree kernels belonging to the
smoothed tree kernels class. These recursively computes (but, the recursive formulation
is not given here) the following general equation:

STK(ta, tb) =
∑

ti∈S(ta)

tj∈S(tb)

ω(ti, tj)

where ω(ti, tj) is the similarity weight between two subtrees ti and tj . DTSK0 and
DSTK+1 approximate respectively the kernels STK0 and STK+1 defined respectively

7
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by the following equations for the weights:

ω0(ti, tj) = 〈wh(ti),wh(tj)〉 · δ(s(ti), s(tj)) ·
√
λ|N(ti)|+|N(tj)|

ω+1(ti, tj) = (〈wh(ti),wh(tj)〉+ 1) · δ(s(ti), s(tj)) ·
√
λ|N(ti)|+|N(tj)|

5. Experimental investigation

5.1 Experimental set-up

Generic settings. We experimented with two datasets: the Recognizing Textual Entail-
ment datasets (RTE) (Dagan, Glickman, and Magnini 2006) and the the Semantic Textual
Similarity 2013 datasets (STS) (Agirre et al. 2013). The STS task consists of determining
the degree of similarity (ranging from 0 to 5) between two sentences. We used the data
for core task of the 2013 challenge data. The STS datasets contains 5 datasets: headlines,
OnWN, FNWN, SMT and MSRpar, which contains respectively 750, 561, 189, 750 and
1500 pairs. The first four datasets were used for testing, while all the training has been
done on the fifth. RTE is instead the task of deciding whether a long text T entails a
shorter text, typically a single sentence, called hypothesis H . It has been often seen as
a classification task (see (Dagan et al. 2013)). We used four datasets: RTE1, RTE2, RTE3,
and RTE5, with the standard split between training and testing. The dev/test distribu-
tion for RTE1-3, and RTE5 is respectively 567/800, 800/800, 800/800, and 600/600 T-H
pairs.

Distributional vectors are derived with DISSECT (Dinu, The Pham, and Baroni
2013) from a corpus obtained by the concatenation of ukWaC (wacky.sslmit.unibo.it),
a mid-2009 dump of the English Wikipedia (en.wikipedia.org) and the British National
Corpus (www.natcorp.ox.ac.uk), for a total of about 2.8 billion words. We collected a
35K-by-35K matrix by counting co-occurrence of the 30K most frequent content lemmas
in the corpus (nouns, adjectives and verbs) and all the content lemmas occurring in the
datasets within a 3 word window. The raw count vectors were transformed into positive
Pointwise Mutual Information scores and reduced to 300 dimensions by Singular Value
Decomposition. This setup was picked without tuning, as we found it effective in
previous, unrelated experiments.

To build our DTSKs and for the two baseline kernels TK and DTK, we used the im-
plementation of the distributed tree kernels2. We used: 1024 and 2048 as the dimension
of the distributed vectors, the weight λ is set to 0.4 as it is a value generally considered
optimal for many applications (see also (Zanzotto and Dell’Arciprete 2012a)).

The statistical significance, where reported, is computed according to the sign test.

Direct correlation settings. For the direct correlation experiments, we used the RTE data
sets and the testing sets of the STS dataset (that is, headlines, OnWN, FNWN, SMT). We
computed the Spearman’s correlation between values produced by our DSTK0 and
DSTK+1 and produced by the standard versions of the smoothed tree kernel, that is,
respectively, STK0 and STK+1. We obtained text fragment pairs by randomly sampling

2 http://code.google.com/p/distributed-tree-kernels/
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Table 1
Spearman’s correlation between Distributed Smoothed Tree Kernels and Smoothed Tree Kernels

RTE1 RTE2 RTE3 RTE5 headl FNWN OnWN SMT

STK0 vs DSTK0
1024 0.86 0.84 0.90 0.84 0.87 0.65 0.95 0.77

2048 0.87 0.84 0.91 0.84 0.90 0.65 0.96 0.77

STK+1 vs DSTK+1
1024 0.81 0.77 0.83 0.72 0.88 0.53 0.93 0.66

2048 0.82 0.78 0.84 0.74 0.91 0.56 0.94 0.67

two text fragments in the selected set. For each set, we produced exactly the number of
examples in the set, e.g., we produced 567 pairs for RTE1 dev, etc..

Task-based settings. For the task-based experiments, we compared systems using the stan-
dard evaluation measure and the standard split in the respective challenges. As usual in
RTE challenges the measure used is the accuracy, as testing sets have the same number
of entailment and non-entailment pairs. For STS, we used MSRpar as training, and we
used the 4 test sets as testing. We compared systems using the Pearson’s correlation as
the standard evaluation measure for the challenge3. Thus, results can be compared with
the results of the challenge.

As classifier and regression learner, we used the java version of LIBSVM (Chang
and Lin 2011). In the two tasks we used in a different way our DSTs (and the related
STKs) within the learners. In the following, we refer to instances in RTE or STS as pairs
p = (ta, tb) where ta and tb are the two parse trees for the two sentences a and b for STS
and for the text a and the hypothesis b in RTE.

We will indicate with K(p1, p2) the final kernel used in the learning algorithm,
which takes as input two training instances, while we will use κ to denote either any of
our DSTK (that is, κ(x, y) = 〈DST (x), DST (y)〉) or any of the standard smoothed tree
kernels (that is, κ(x, y) = STK(x, y)).

In STS, we encoded only similarity feature between the two sentences. Thus, we
used the kernel defined as:

K(p1, p2) = (κ(ta1 , t
b
1) · κ(ta2 , tb2) + 1)2

In RTE, we followed standard approaches (Dagan et al. 2013; Zanzotto, Pennac-
chiotti, and Moschitti 2009), that is, we exploited a model with only a rewrite rule feature
space (RR). The model use our DSTs and the standard STKs in the following way as
kernel function:

RR(p1, p2) = κ(ta1 , t
a
2) + κ(tb1, t

b
2)

Finally, to investigate whether our DSTKs behave better than purely structural
models, we experimented with the classical tree kernel (TK) (Collins and Duffy 2002)
and the distributed tree kernel (DTK) (Zanzotto and Dell’Arciprete 2012a). Again, these
kernels are used in the above models as κ(ta, tb).

3 Correlations are obtained with the organizers’ script

9



26

Italian Journal of Computational Linguistics Volume 1, Number 1

Table 2
Task-based analysis: Correlation on Semantic Textual Similarity ( † is different from DTK, TK,
DSTK+1, and STK+1 with a stat.sig. of p > 0.1; ∗ the difference between the kernel and its
distributed version is not stat.sig.)

STS

headl FNWN OnWN SMT Average

DTK 0.448 0.118 0.162 0.301 0.257

TK 0.456 0.145 0.158 0.303 0.265∗

DSTK0 0.491 0.155 0.358 0.305 0.327†

STK0 0.490 0.159 0.349 0.305 0.325∗

DSTK+1 0.475 0.138 0.266 0.304 0.295

STK+1 0.478 0.156 0.259 0.305 0.299∗

5.2 Results

Table 1 reports the results for the correlation experiments. We report the Spearman’s
correlations over the different sets (and different dimensions of distributed vectors)
between our DSTK0 and the STK0 (first two rows) and between our DSTK+1 and the
corresponding STK+1 (second two rows) . The correlation is above 0.80 in average for
both RTE and STS datasets in the case of DSTK0 and the STK0. The correlation between
DSTK+1 and the corresponding STK+1 is instead a little bit lower. This depends on the
fact that DSTK+1 is approximating the sum of two kernels the TK and the STK0 (as
STK+1 is the sum of the two kernels). Then, the underlying feature space is bigger
with respect to the one of STK0 and, thus, approximating it is more difficult. The
approximation also depends on the size of the distributed vectors. Higher dimensions
yield to better approximation: if we increase the distributed vectors dimension from
1024 to 2048 the correlation between DSTK+1 and STK+1 increases up to 0.80 on RTE
and up to 0.77 on STS. This direct analysis of the correlation shows that our CDSM are
approximating the corresponding kernel function and there is room of improvement by
increasing the size of distributed vectors.

Task-based experiments confirm the above trend. Table 2 and Table 3, respectively,
report the correlation of different systems on STS and the accuracies of the different
systems on RTE. Our CDSMs are compared against a baseline system (DTK) in order
to understand whether in the specific tasks our more complex model is interesting, and
against, again, the systems with the corresponding smoothed tree kernels in order to
explore whether our DSTKs approximate systems based on STKs. For all this set of
experiment we fixed the dimension of the distributed vectors to 1024.

Table 2 is organized as follows: columns 2-6 report the correlation of the STS
systems based on syntactic/semantic similarity. Comparing rows in this columns, we
can discover that DSTK0 and DSTK+1 behave significantly better than DTK and that
DSTK0 behave better than the standard TK. Thus, our DSTKs are positively exploiting
distributional semantic information along with structural information. Moreover, both
DSTK0 and DSTK+1 behave similarly to the corresponding models with standard
kernels STKs. Results in this task confirm that structural and semantic information are
both captured by CDSMs based on DSTs.

Table 3 is organized as follows: columns 2-6 report the accuracy of the RTE systems
based on rewrite rules (RR).

10
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Table 3
Task-based analysis: Accuracy on Recognizing Textual Entailment ( † is different from DTK and
TK wiht a stat.sig. of p > 0.1; ∗ the difference between the kernel and its distributed counterpart
is not statistically significant.)

RTE

RTE1 RTE2 RTE3 RTE5 Average

DTK 0.533 0.515 0.516 0.530 0.523

TK 0.561 0.552 0.531 0.54 0.546

DSTK0 0.571 0.551 0.547 0.531 0.550†

STK0 0.586 0.563 0.538 0.545 0.558∗

DSTK+1 0.588 0.562 0.555 0.541 0.561†

STK+1 0.586 0.562 0.542 0.546 0.559∗

Results on RTE are extremely promising as all the models including structural
information and distributional semantics have better results than the baseline models
with a statistical significance of 93.7%. As expected (Mehdad, Moschitti, and Zanzotto
2010), STKs behave also better than tree kernels exploiting only syntactic information.
But, more importantly, our CDSMs based on the DSTs are behaving similarly to these
smoothed tree kernels, in contrast to what reported in (Zanzotto and Dell’Arciprete
2011). In (Polajnar, Rimell, and Kiela 2013), it appears that results of the (Zanzotto
and Dell’Arciprete 2011)’s method are comparable to the results of STKs for STS, but
this is mainly due to the flattening of the performance given by the lexical token
similarity feature which is extremely relevant in STS. Even if distributed tree kernels
do not approximate well tree kernels with distributed vectors dimension of 1024, our
smoothed versions of the distributed tree kernels approximate correctly the correspond-
ing smoothed tree kernels. Their small difference is not statistically significant (less than
70%). The fact that our DSTKs behave significantly better than baseline models in RTE
and they approximate the corresponding STKs shows that it is possible to positively
exploit structural information in CDSMs.

6. Conclusions and future work

Distributed Smoothed Trees (DST) are a novel class of Compositional Distributional
Semantics Models (CDSM) that effectively encode structural information and distribu-
tional semantics in tractable rank-2 tensors, as experiments show. The paper shows
that DSTs contribute to close the gap between two apparently different approaches:
CDSMs and convolution kernels. This contribute to start a discussion on a deeper
understanding of the representation power of structural information of existing CDSMs.
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Thematic fit is the extent to which an entity fits a thematic role in the semantic frame of an
event, e.g., how well humans would rate “knife” as an instrument of an event of cutting. We
explore the use of the SENNA semantic role-labeller in defining a distributional space in order
to build an unsupervised model of event-entity thematic fit judgements. We test a number of
ways of extracting features from SENNA-labelled versions of the ukWaC and BNC corpora and
identify tradeoffs. Some of our Distributional Memory models outperform an existing syntax-
based model (TypeDM) that uses hand-crafted rules for role inference on a previously tested data
set. We combine the results of a selected SENNA-based model with TypeDM’s results and find
that there is some amount of complementarity in what a syntactic and a semantic model will
cover. In the process, we create a broad-coverage semantically-labelled corpus.

1. Introduction

Can automated tasks in natural language semantics be accomplished entirely through
models that do not require the contribution of semantic features to work at high accu-
racy? Unsupervised semantic role labellers such as that of Titov and Klementiev (2011)
and Lang and Lapata (2011) do exactly this: predict semantic roles strictly from syntactic
realizations. In other words, for practical purposes, the relevant and frequent semantic
cases might be completely covered by learned syntactic information. For example, given
a sentence The newspaper was put on the table, such SRL systems would identify that the
table should receive a “location” role purely from the syntactic dependencies centered
around the preposition on.

We could extend this thinking to a slightly different task: thematic fit modelling. It
could well be the case that the the table could be judged a more appropriate filler of a
location role for put than, e.g., the perceptiveness, entirely due to information about the
frequency of word collocations and syntactic dependencies collected through corpus
data, handmade grammars, and so on. In fact, today’s distributional models used for
modelling of selectional preference or thematic fit generally base their estimates on
syntactic or string co-occurrence models (Baroni and Lenci 2010; Ritter, Mausam, and
Etzioni 2010; Ó Séaghdha 2010). The Distributional Memory (DM) model by Baroni and

∗ Computational Linguistics and Phonetics / MMCI Cluster of Excellence, Saarland University.
E-mail: {asayeed,vera,pavels}@coli.uni-saarland.de

© 2015 Associazione Italiana di Linguistica Computazionale



32

Italian Journal of Computational Linguistics Volume 1, Number 1

Lenci (2010) is one example of an unsupervised model based on syntactic dependencies,
which has been successfully applied to many different distributional similarity tasks,
and also has been used in compositional models (Lenci 2011).

While earlier work has shown that syntactic relations and thematic roles are re-
lated concepts (Levin 1993), there are also a large number of cases where thematic
roles assigned by a role labeller and their best-matching syntactic relations do not
correspond (Palmer, Gildea, and Kingsbury 2005). However, it is possible that this non-
correspondence is not a problem for estimating typical agents and patients from large
amounts of data: agents will most of the time coincide with subjects, and patients will
most of the time coincide with syntactic objects. On the other hand, the best resource
for estimating thematic fit should be based on labels that most closely correspond to the
target task, i.e. semantic role labelling, instead of syntactic parsing.

Being able to automatically assess the semantic similarity between concepts as well
as the thematic fit of words in particular relationships to one another has numerous
applications for problems related to natural language processing, including syntactic
(attachment ambiguities) and semantic parsing, question answering, and in the gen-
eration of lexical predictions for upcoming content in highly incremental language
processing, which is relevant for tasks such as simultaneous translation as well as
psycholinguistic modelling of human language comprehension.

Semantics can be modelled at two levels. One level is compositional semantics,
which is concerned with how the meanings of words are combined. Another level is
lexical semantics, which include distributional models; these latter represent a word’s
meaning as a vector of weights derived from counts of words with which the word
occurs (see for an overview (Erk 2012; Turney and Pantel 2010)). A current challenge is to
bring these approaches together. In recent work, distributional models with structured
vector spaces have been proposed. In these models, linguistic properties are taken into
account by encoding the grammatical or semantic relation between a word and the
words in its context.

DM is a particularly suitable approach for our requirements, as it satisfies the
requirements specific to our above-mentioned goals including assessing the semantic
fit of words in different grammatical functions and generating semantic predictions, as
it is broad-coverage and multi-directional (different semantic spaces can be generated
on demand from the DM by projecting the tensor onto 2-way matrices by fixing the
third dimension to, e.g., “object”).

The usability and quality of the semantic similarity estimates produced by DM
models depend not only on how the word pairs and their relations are represented,
but also on the training data and the types of relations between words that are used
to define the links between words in the model. Baroni and Lenci have chosen the
very fast MaltParser (Nivre et al. 2007) to generate the semantic space. The MaltParser
version used by Baroni and Lenci distinguishes a relatively small number of syntactic
roles, and in particular does not mark the subject of passives differently from subjects
of active sentences. For our target applications in incremental semantic parsing (Sayeed
and Demberg 2013), we are however more strongly interested in thematic roles (agent,
patient) between words than in their syntactic configurations (subject, object).

In this paper, we produce DM models based directly on features generated from
a semantic role labeller that does not directly use an underlying syntactic parse. The
labelling tool we use, SENNA (Collobert et al. 2011), labels spans of text with PropBank-
style semantic roles, but the spans often include complex modifiers that contain nouns
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that are not the direct recipients of the roles assigned by the labeler1. Consequently, we
test out different mechanisms of finding the heads of the roles, including exploiting the
syntactic parse provided to us by the Baroni and Lenci work post hoc. We find that a
precise head-finding has a positive effect on performance on our thematic fit modeling
task. In the process, we also produce a semantically labeled corpus that includes ukWaC
and BNC2.

In addition, we want to test the extent to which a DM trained directly on a role
labeller which produces PropBank style semantic annotations can complement the
syntax-based DM model on thematic fit tasks, given a similar corpus of training data.
We maintain the unsupervised aspects of both models by combining their ratings by
averaging without any weight estimation (we “guess” 50%) and show that we get an
improvement in matching human judgements collected from previous experiments.
We demonstrate that a fully unsupervised model based on the SENNA role-labeller
outperforms a corresponding model based on MaltParser dependencies (DepDM) by
a wide margin. Furthermore, we show that the SENNA-based model can compete
with Baroni and Lenci’s better performing TypeDM model on some thematic fit tasks;
TypeDM involves hand-crafted rules over and above the finding of syntactic heads,
unlike our DMs. We then investigate the differences between the characteristics of the
models by mixing TypeDM and a high-performing SENNA-based model at different
stages of the thematic fit evaluation process. We thus demonstrate that the SENNA-
based model makes a separate contribution to thematic fit evaluation.

1.1 Thematic role typicality

Thematic roles describe the relations that entities take in an event or relation. Thematic
role fit correlates with human plausibility judgments (Padó, Crocker, and Keller 2009;
Vandekerckhove, Sandra, and Daelemans 2009), which can be used to evaluate whether
a distributional semantic model can be effectively encoded in the distributional space.

A suitable dataset is the plausibility judgment data set by Padó (2007), which
includes 18 verbs with up to twelve nominal arguments, totalling 414 verb-noun-role
triples. The words were chosen based on their frequency in the Penn Treebank and
FrameNet; we call this simply the “Padó” dataset from now on (see table 1). Human
subjects were asked how common the nominal arguments were as agents or as patients
for the verbs. We also evaluate the DM models on a data set by McRae et al. (1998),
which contains thematic role plausibility judgments for 1444 verb-role-noun triples
calculated over the course of several experiments. We call these “McRae agent/patient”.

However, these triples do contain a significant proportion of words which only very
rarely occur in our training data, and will therefore be represented more sparsely. The
McRae dataset is thus a more difficult data set to model than the Padó dataset.

While the first two data sets only contain plausibility judgments for verbs and
their agents and patients, we additionally use two data sets containing judgments for
locations (274 verb-location pairs) and instruments (248 verb-instrument pairs) (Ferretti,
McRae, and Hatherell 2001) that we call “Ferretti locations” and “Ferretti instruments”
respectively. We use them to see how well these models apply to roles other than agent
and patient. All ratings were on a scale of 1 to 7.

1 E.g., “Bob ate the donut that poisoned Mary”; “Mary” is not a recipient of the patient role of “eat”, but
SENNA labels it as such, as it is part of the noun phrase including “donut”.

2 We provide the entire labelled corpus at
http://rollen.mmci.uni-saarland.de. Users of the corpus should cite this paper.
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Table 1
Sample of judgements from Padó dataset.

Verb Noun Semantic role Score
advise doctor agent 6.8
advise doctor patient 4.0
confuse baby agent 3.7
confuse baby patient 6.0
eat lunch agent 1.1
eat lunch patient 6.9

Finally, we include two other data sets that come from an exercise in determining
the effect of verb polysemy on thematic fit modelling (Greenberg, Demberg, and Sayeed
2015). The first, which we call “Greenberg objects”, are verbs and objects with ratings
(from 1 to 7) obtained from Mechanical Turk; there are a total of 480 items in this
dataset. The second are 240 filler items—”Greenberg fillers”—used in the Mechanical
Turk annotation that have been taken from the McRae agent/patient data and re-rated.
While the Padó and McRae items used a formulation “How common is it for a noun
to be verbed?”, the Greenberg data was evaluated with a statement that workers were
supposed to rate: “A noun is something that is verbed.” This is intended to reduce the
effect that real-world frequency has on the answers given by workers: that caviar may
not be a part of most people’s meals should have a minimal effect on its thematic fit as
something that is eaten. In this feature exploration, we include the Greenberg ratings as
another set of data points.

1.2 Semantic role labelling

Semantic role labelling (SRL) is the task of assigning semantic roles such as agent,
patient, location, etc. to entities related to a verb or predicate. Structured lexica such
as FrameNet, VerbNet and PropBank have been developed as resources which describe
the roles a word can have and annotate them in text corpora such as the PTB. Both
supervised and unsupervised techniques for SRL have been developed. Some build on
top of a syntactic parser, while others work directly on word sequences. In this paper,
we use SENNA. SENNA has the advantage of being very fast and robust (not needing
parsed text); it is able to label large, noisy corpora such as UKWAC. Without making
inferences over parse trees, SENNA is able to distinguish thematic roles and identify
them directly (figure 1).

SENNA uses PropBank roles which include agent (ARG0) and patient (ARG1) roles
(up to ARG4 based on a classification of roles for which verbs directly subcategorize,
such as instruments and benefactives). It also includes a large number of modifier roles,
such as for locations (ARGM-LOC) and temporal expressions (ARGM-TMP).

We also make use of MaltParser output in order to refine the output of SENNA—we
do not exploit, as Baroni and Lenci do, the actual content of the syntactic dependencies
produced by MaltParser. We explore inter alia the extent to which the increased precision
in finding role-assignees from dependency connection information assists in producing
a better match to human judgements.
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the donut was eaten by Bob
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the donut was eaten by Bob
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Figure 1
MaltParser dependency parse vs. SENNA semantic role labelling. SENNA directly identifies the
patient role that is the syntactic subject of the passive sentence.

2. Distributional Memory

Baroni and Lenci (2010) present a framework for recording distributional information
about linguistic co-occurrences in a manner explicitly designed to be multifunctional
rather than being tightly designed to reflect a particular task. Distributional Memory
(DM) takes the form of an order-3 tensor, where two of the tensor axes represent words
or lemmas and the third axis represents the syntactic link between them.

Baroni and Lenci construct their tensor from a combination of corpora: the UKWAC
corpus, consisting of crawled UK-based web pages, the British National Corpus (BNC),
and a large amount of English Wikipedia. Their linking relation is based on the
dependency-parser output of MaltParser (Nivre et al. 2007), where the links consist of
lexicalized dependency paths and lexico-syntactic shallow patterns, selected by hand-
crafted rules.

The tensor is represented as a sparse array of triples of the form (word, link, word)
with values as local mutual information (LMI), calculated as O log O

E where O is the
observed occurrence count of the triple and E the count expected if we assume each
element of the triple has a probability of appearing that is independent of one another.
Baroni and Lenci propose different versions of representing the link between the words
(encoding the link between the words in different degrees of detail) and ways of count-
ing frequencies. Their DepDM model encodes the link as the dependency path between
words, and each (word,link,word) triple is counted. These occurrence frequencies of
triples is used to calculate LMI3. The more successful TypeDM model uses the same
dependency path encoding as a link but bases the LMI estimates on type frequencies
(counted over grammatical structures that link the words) rather than token frequencies.

Both DepDM and TypeDM also contain inverse links: if (monster, sbj_tr eat) appears
in the tensor with a given LMI, another entry with the same LMI will appear as (eat,
sbj_tr−1, monster).

Baroni and Lenci provide algorithms to perform computations relevant to various
tasks in NLP and computational psycholinguistics. These operations are implemented
by querying slices of the tensor. To assess the fit of a noun w1 in a role r for a verb w2,
they construct a centroid from the 20 top fillers for r with w2 selected by LMI, using
subject and object link dependencies instead of thematic roles. To illustrate, in order to

3 E.g., in “Bob ate the donut”, they would count (Bob,subj,eat), (donut,obj,eat), and (Bob,verb,donut) as triples.
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Table 2
Comparison on Padó data, results of other models from Baroni and Lenci (2010).

Model Coverage (%) ρ
BagPack 100 60
TypeDM+SDDM (Malt-only) 99 59
SDDM (Malt-only) 99 56
TypeDM 100 51
Padó 97 51
ParCos 98 48
DepDM 100 35

determine how well table fits as a location for put, they would construct a centroid of
other locations for put that appear in the DM, e.g. desk, shelf, account . . .

The cosine similarity between w1’s vector and the centroid represents the preference
for the noun in that role for that verb. The centroid used to calculate the similarity
represents the characteristics of the verb’s typical role-fillers in all the other contexts
in which they appear.

Baroni and Lenci test their procedure against the Padó et al. similarity judgements
by using Spearman’s ρ. They compare their model against the results of a series of other
models, and find that they achieve full coverage of the data with a ρ of 0.51, higher than
most of the other models except for the BagPack algorithm (Herdağdelen and Baroni
2009), the only supervised system in the comparison, which achieved 0.60. Using the
TypeDM tensor they freely provide, we replicated their result using our own tensor-
processing implementation.

3. SENNA

SENNA (Collobert and Weston 2007; Collobert et al. 2011) is a high performance role
labeller well-suited for labelling a corpus the size of UKWAC and BNC due to its speed.
It uses a multi-layer neural network architecture that learns in a sliding window over
token sequences in a process similar to a conditional random field, working on raw text
instead of syntactic parses. SENNA extracts features related to word identity, capitaliza-
tion, and the last two characters of each word. From these features, the network derives
features related to verb position, POS tags and chunking. It uses hidden layers to learn
latent features from the texts which are relevant for the labelling task.

SENNA was trained on PropBank and large amounts of unlabelled data. It achieves
a role labelling F score of 75.49%, which is still comparable to state-of-the-art SRL
systems which use parse trees as input4.

4 For example, one very recent system reaches 81.53% F-score on role-labelling (Foland Jr and Martin 2015)
on in-domain data.
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4. Implementation

4.1 Feature selection

We constructed our DMs from a combination of ukWaC and BNC5 by running the
sentences individually through SENNA and counting the (assignee, role, assigner) triples
that emerged from the SENNA labelling. However, SENNA assigns roles to entire
phrases, some of which include complex modifiers such as relative clauses. We needed
to find a more specific focus on the assigners (always verbs, given the training data
used for SENNA) and assignees; however, there are number of ways to do this, and we
experimented with different types of head-finding, which is a form of feature selection
for a SENNA-based DM.

4.1.1 Head-finding
Head-finding takes place over spans found by SENNA. There are two basic ways in
which we search for heads, one partly dependent on a syntactic parse (“Malt-based”),
one not (“linear”).

Linear. The “linear” algorithm is not based on a syntactic parse, but instead on the part-
of-speech tags processed in sequence. It is similar to the Magerman (Magerman 1994)
head percolation heuristic. This head-finding algorithm uses a heuristic to detect the
head of a noun phrase. This heuristic operates as follows: iterating over each word w,
if the POS tag is nominal store it and forget any previous nominal words. At the end of
the string, return the stored word. Discard the word if a possessive or other such “inter-
rupting” item is passed. For example, in the phrase “The Iron Dragon’s Daughter”, the
system would first store “Iron”, forget “Iron” when it found the possessive “Dragon’s”,
and return “Daughter”. It is possible for it to return nothing, if the span given to it
has no suitable candidate. The linear process can only identify nominal constituents;
we found that adding heuristics to detect other possible role-assignees (e.g. adverbs
in instrumental roles) reduced the quality of the output due to unavoidable overlaps
between the criteria used in the heuristics.

Malt-based. This head-finding procedure makes use of a small amount of syntactic
dependency information. The “Malt-based” head-finding heuristic is based on the
MaltParser output for ukWaC and BNC that was provided by Baroni and Lenci and
used in the construction of DepDM and TypeDM. In essence, it involves using the
dependencies reaching the role-assigning verb. Each word directly connected to the
role-assigning verb inside the SENNA span is identified as a separate role-filler for the
DM. We transitively explore connections via function words such as prepositions and
modals. See figure 2 for an example.

This heuristic is somewhat conservative. It is sometimes the case that SENNA
identifies a role-filler that does not have a Malt-based dependency path. Therefore,
in addition to the “Malt-only” strategy, we include two fallback strategies when a
MaltParser dependency does not resolve to any item. This strategy allows us to include
role-assignees that are not necessarily nominal, such as verbs in subordinate clauses
receiving roles from other verbs or adverbs taking on instrumental roles.

5 This is the same as Baroni and Lenci, except that they included Wikipedia text—we found no
improvement from this and omitted it to reduce processing time.
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Meg stood in the garden doorway , her small figure silhouetted . . .

ARGM-LOC

Figure 2
The Malt-based head-finding algorithm illustrated. SENNA has found “the garden doorway”
and assigned it ARGM-LOC. We use the MaltParser dependency structure to find that
“doorway” is the head. We skip “in” by POS tag and transitively pass over it. The first item we
encounter is the head.

The first fallback is based on the linear head-finding strategy. We make use of the
linear strategy whenever there is no valid MaltParser dependency.

The second fallback we call “span”, and it is based on the idea that even if SENNA
has identified a role-bearing span of text to which MaltParser does not connect the verb
direction, we can find an indirect link via another content word closer to the verb.
The span technique searches for the word within the span with a direct dependency
link closest to the beginning of the sentence, under the assumption that verbs tend
to appear early in English sentences. If the span-exterior word is a closed-class item
such as a preposition, it finds the word with the dependency link that is next closest
to the beginning of the sentence. Our qualitative comparison of the linear and span
fallbacks suggests that the span fallback may be slightly better, and we test this in our
experiments.

4.1.2 Vocabulary selection
Using the entire vocabularies of ukWaC and BNC would be prohibitively costly in terms
of resources, as there are numerous items that are hapax legomena or otherwise occur very
rarely. Therefore, we do some initial vocabulary selection, in two ways.

The first vocabulary selection method we call “balanced” and proceeds in a manner
similar to Baroni and Lenci. We choose the 30,000 most frequent nominal words (includ-
ing pronouns) in COCA whose lemmas are present as lemmas in WordNet; we do the
same for 6,000 verbs. The balanced vocabulary produces DMs that only contain nominal
and verbal role-assignees.

The second vocabulary selection method we call “prolific”, and it involves using
the top 50,000 most frequent words (by type) in the corpus itself, regardless of part of
speech. However, as our DMs are evaluated with POS-labelled lexical items (the POS
tags we use are coarse: simply nouns, verbs, adverbs, and so on), this can evolve into
a “real” vocabulary that is somewhat larger that 50,000, as many word types represent
multiple parts of speech (e.g., “fish” is both a verb and a noun).

Some of our features involve a parameter such as vocabulary size. We choose
reasonable values for these and avoid parameter searching in order for the tensors to
remain as unsupervised as possible.
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4.2 From corpus to DMs

The process of constructing DMs from the above proceeds as follows:

1. The corpus is first tokenized and some character normalization is
performed, as the ukWaC data is collected from the Web and contains
characters that are not accepted by SENNA. We use the lemmatization
performed via MaltParser and provided by Baroni and Lenci.

2. Each sentence is run through SENNA and the role-assigning verbs with
their role-assigned spans are collected. There is a very small amount of
data loss due to parser errors and software crashes.

3. One of the head-finding algorithms is run over the spans: either
linear-only, Malt-only, Malt-based with linear fallback, and Malt-based
with span fallback. These effectively constitute separate processed corpora.

4. A table of counts is constructed from each of the head-finding output
corpora, the counts being occurrences of (assigner, role, assignee) triples. The
assigners and assignees are filtered by either balanced or prolific
vocabularies.

5. This table of counts is processed into LMI values and the inverse links are
also created. Triples with zero or negative LMI values are removed. This
produces the final set of DM tensors.

In terms of choosing links, our implementation most closely corresponds to Baroni and
Lenci’s DepDM model over MaltParser dependencies. The SENNA-based tensors are
used to evaluate thematic fit data as in the method of Baroni and Lenci described above.

5. Experiments

We ran experiments with our tensor (henceforth SDDM) on the following sources of
thematic fit data: the Padó dataset, agents/patients from McRae, instrumental roles
from Ferretti et al. (2001), location roles from Ferretti et al., and objects from Greenberg
et al. (2015), both experimental items and fillers. We also concatenated all the datasets
together and evaluated them as a whole. For each dataset, we calculated Spearman’s
ρ with respect to human plausibility judgments. We compared this against the perfor-
mance of TypeDM given our implementation of Baroni and Lenci’s thematic fit query
system. We then took the average of the scores of SDDM and TypeDM for each of these
human judgement sources and likewise report ρ.

During centroid construction, we used the ARG0 and ARG1 roles to find typical
nouns for subject and object respectively. The Padó data set contains a number of
items that have ARG2 roles; Baroni and Lenci map these to object roles or subject
roles depending on the verb6; our SENNA-based DM can use ARG2 directly. For the
instrument role data, we mapped the verb-noun pairs to PropBank roles ARG2, ARG3
for verbs that have an INSTRUMENT in their frame, otherwise ARGM-MNR. We used
“with” as the link for TypeDM-centroids; the same PropBank roles work with SENNA.

6 They mapped ARG2 for verbs like “ask” and “tell” to subject roles for “hit” to object roles.
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Table 3
Spearman’s ρ values (x100) with SDDM variants by head-finding algorithm with the balanced
vocabulary.

Head-finding Padó McRae agent/patient Ferretti loc. Ferretti inst.
Linear 51 27 12 19
Malt 56 27 13 27
Malt+linear 52 28 13 23
Malt+span 54 27 16 23
Head-finding Greenberg objects Greenberg fillers All items
Linear 42 19 29
Malt 40 16 31
Malt+linear 44 20 31
Malt+span 40 17 30

For location roles, we used ARGM-LOC; TypeDM centroids are built with “in”, “at”,
and “on” as locative prepositions.

Using the different DM construction techniques from section 4, we arrive at the
following exploration of the feature space:

1. We use the balanced vocabulary and vary the technique. We test the linear
and Malt-only head-finding algorithms, and we test the Malt-based
head-finding with the linear and span fallbacks.

2. We use the balanced vocabulary with the linear head-finding algorithm.

3. We then use the prolific vocabulary and test the linear and Malt-only
techniques and the Malt-based technique with the span fallback.

4. Finally, we average the cosines from Baroni and Lenci’s TypeDM with the
Malt-only technique to explore the differences in what is encoded by a
SENNA-based tensor from a fully MaltParser-based one.

6. Results and discussion

For all our results, we report coverage and Spearman’s ρ. Spearman’s ρ is calculated
with missing items (due to absence in the tensor on which the result was based)
removed from the calculation.

Our SENNA-based tensors are taken directly from SENNA output in a manner
analogous to Baroni and Lenci’s construction of DepDM from MaltParser dependency
output. Both of them do much better than the reported results for DepDM (see Table 2)
and two of the Malt-based SDDM variants (Malt-only and Malt+Span) do better than
TypeDM on the Padó data set.

6.1 Varying the head-finding algorithm

The results of these experiments are summarized in Table 3. We find that particu-
larly for the Padó dataset and the instrument dataset, the Malt-only DM tensor is
best-performing and exceeds the linear head-finding by a large margin. Some of this
improvement is possibly due to the fact that our tensors can handle ARG2 directly;
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Table 4
Spearman’s ρ values (x100) for SDDM with the prolific vocabulary.

Head-finding Padó McRae agent/patient Ferretti loc. Ferretti inst.
Linear 51 26 12 13
Malt 52 24 15 14
Malt+span 50 25 19 12
Head-finding Greenberg objects Greenberg fillers All items
Linear 43 18 27
Malt 38 14 26
Malt+span 40 16 27

however, the biggest gain is realized for the Malt-only process. On the other hand, the
Malt-only tensor does relatively poorly on the Greenberg dataset, both the experimental
objects and the fillers.

As for the fallback variants of the Malt-based tensor, the span fallback reflects
some of the behaviour of the Malt-only tensor, although it does particularly well at
the location dataset. In contrast, the linear fallback does well on the Greenberg data.
It also appears that all the tensors have roughly the same effectiveness when run on
all the datasets together. These observations suggest that there are tradeoffs relative
to the “application” of the tensor. The Greenberg data pulls down the performance of
the Malt-based and Malt+span tensors most acutely; it should be noted that the main
difference with the Padó data is the question that was asked as well as its presentation
via Mechanical Turk7. On the whole, the fallbacks appear to have a moderating effect
on the Malt-based tensor, reducing ρ on Padò and Ferretti instruments but increasing it
on some of the other data sets.

6.2 Prolific vocabulary

In table 4, we see that by comparison to table 3, the larger prolific vocabularies do not
assist much, and in fact hurt overall. The only improvement we see is in the Malt+span
version, which does better than the balanced-vocabulary tensors on locations.

The balanced vocabulary produces tensors with a vocabulary size of 36,000, but
the prolific vocabulary allows for considerable variation depending on how many
forms have multiple realizations as open-class parts-of-speech, which is very common
in English. The Malt-only prolific DM has 68,178 vocabulary items, 84,903 with the
span fallback, and the linear-only has 89,979. As simply adding vocabulary and thus
expanding the scope of feature selection does not appear to differentiate these tensors,
the influence of less frequent items becomes more apparent—and their influence is not
necessarily positive.

7 That the Greenberg data is only objects doesn’t seem to make much difference here. The Malt-only tensor
on Padó objects alone yields a ρ of 48 while the linear-only tensor yields 42—the linear-only tensor is
considerably worse on objects for the Padó dataset.
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Table 5
Spearman’s ρ values (x100) for TypeDM and averaging of TypeDM with the Malt-only SDDM
variant.

System Padó McRae agent/patient Ferretti loc. Ferretti inst.
TypeDM 53 33 23 36
SDDM (Malt-only) 56 27 13 28
TypeDM+SDDM 59 34 21 39
TypeDM/SDDM
correlation

65 54 26 30

System Greenberg objects Greenberg fillers All items
TypeDM 53 31 38
SDDM (Malt-only) 41 16 31
TypeDM+SDDM 51 26 38
TypeDM/SDDM
correlation

66 68 54

6.3 Combining with TypeDM
6.3.1 Cosine averaging
Table 5 contains the result of averaging the cosine scores produced by TypeDM8 with
those of two SDDM variants. The variant we try is the Malt-only tensor, because it
exceeds TypeDM’s score on Padó on its own. Averaging its cosine scores with TypeDM
over the Padó data set provides a further boost. A small improvement occurs with the
McRae dataset, but the instruments also show a further increase. However, the Malt-
only tensor reduces performance on locations and the Greenberg datasets, and it makes
no difference on the all-items dataset.

So why does the Malt-only tensor reduce ρ on locations and the Greenberg data? To
analyse this, we calculated Spearman’s ρ values on a per-verb basis in the locations data
set for TypeDM and for Malt-only SDDM. Since each verb in this dataset has 5-10 nouns,
the ρ values will not by themselves be highly reliable, but they can provide some hints
for error analysis. Taken individually, the majority of verbs appear to improve with the
Malt-based tensor. These seem to include verbs such as “act”, “confess”, “worship” and
“study”.

The Malt-only SDDM tensor has a relatively high but not total correlations with
TypeDM in terms of cosine, especially apparent in the all-items dataset. These values
suggest that even when their correlations with human judgements are similar, they only
partly model the same aspects of thematic fit. The correlations for the Greenberg data
set are the highest, while the correlations for the locations data set are the lowest, and
these are the worst-performing when the cosines are averaged. This suggests that the
cosine-averaging process is most beneficial when the correlation between the models is
within an “intermediate” range—too much or too little inter-model correlation means
that the differences between the two are adding noise, not signal.

These distinctions are usually more apparent in the less-frequent dimensions. The
Baroni and Lenci’s thematic fit evaluation process uses the top 20 highest-LMI role-

8 Baroni and Lenci used a version of the Pado data that erroneously swapped the judgments for some
ARG0 vs. ARG1. Our repair of this error caused a small upward shift in the TypeDM results (from ρ=51
to 53), but should not cause DepDM (not made publicly available) to catch up.
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Table 6
The number of above-zero LMI values in each SDDM variant, giving an idea of the relative
dimensionality of vectors in each DM.

DM variant Vocabulary Above-zero LMI values
Linear balanced 36,071,848
Malt balanced 22,284,150
Malt+linear balanced 36,046,090
Malt+span balanced 26,139,198
Linear prolific 62,970,314
Malt prolific 35,575,476
Malt+span prolific 42,581,704
TypeDM N/A 131,369,458

fillers for a given verb/role combination. We compared the dimensions of the cen-
troids constructed from these top 20 between TypeDM the SDDM and found little to
distinguish them qualitatively; the most “frequent” dimensions remain most frequent
regardless of technique. Once again, we find that the “long tail” of smaller dimensions
is what distinguishes these techniques from one other, but not necessarily the size of
that long tail, as we can see from table 6. Aside from TypeDM, which is much larger,
most of the variation in DM size has little overall relation to the performance of the DM;
the best competitor to TypeDM (or contributor, when the results are combined) is the
Malt-only tensor, and it is the smallest.

6.3.2 Centroid candidate selection
There are at least two means by which one form of DM tensor could outperform another
on a thematic fit task. One of them is via the respective “semantic spaces” their vectors
inhabit—the individual magnitudes of the dimensions of the vectors used to construct
role-prototypical centroids and test them against individual noun vectors. The other
means is by the candidate nouns that are used to select the vectors from which the
centroids are constructed. In this section, we investigate how these factors interact. Since
the same LMI calculation is used for both the construction of vector dimensions as well
as being the ranking criterion for candidate nouns within a single DM, are these factors
actually dependent on one another?

In order to answer this question, we tested the result of using the top 20 candidates
of one tensor for the construction of centroids using the vectors of another. Specifically,
we took the TypeDM candidates and used them to construct Malt-only SDDM centroids.
We then took cosines of those centroids with the Malt-only SDDM noun vectors for each
dataset. We call this result SDDMTypeDM. We also ran this process vice versa, and we call
that result TypeDMSDDM.

In table 7, we observe that using TypeDM vectors with SDDM candidates had
a small overall deleterious effect on the TypeDM results except on the one dataset
for which Malt-only SDDM outperformed TypeDM—the Padó dataset. It had a large
negative effect on Ferretti instruments. On the other hand, using SDDM vectors with
TypeDM candidates hurt SDDM’s performance on Padó, but improved its performance
considerably on both Greenberg datasets and enormously on instruments—the best
instruments results so far.
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Table 7
Spearman’s ρ values (x100) for TypeDM, SDDM (malt-only), and the candidate-swapped results.
We also include the average Jaccard index (x100) of overlap between the candidate nouns for
each dataset.

System Padó McRae agent/patient Ferretti loc. Ferretti inst.
TypeDM 53 33 23 36
SDDM (Malt-only) 56 27 13 28
TypeDMSDDM 56 32 19 21
SDDMTypeDM 48 25 19 45
Avg. Jaccard index 38 38 29 14
System Greenberg objects Greenberg fillers All items
TypeDM 53 31 38
SDDM (Malt-only) 41 16 31
TypeDMSDDM 49 28 36
SDDMTypeDM 50 29 33
Avg. Jaccard index 48 48 42

What could account for these differences? One thing to note is that the SDDM
balanced vocabulary is still considerably larger than that of TypeDM, so some SDDM
candidates for centroid construction would not have corresponding vectors in TypeDM.
This would mean that the TypeDMSDDM centroids thus constructed would be the sum
of less than 20 vectors. Greenberg et al. (2015) show that the number of vectors chosen
for the centroid does not have a drastic influence on performance of the centroid beyond
10. For the cosines calculated over the Padó dataset, only an average of 7.6% of the
candidate nouns obtained from Malt-only SDDM were not found in TypeDM. However,
it does appear to reduce ρ in several of the datasets, but only the Ferretti instruments
score falls drastically.

We tested the overlap of candidate nouns between TypeDM and the Malt-only
SDDM. That is, for every verb-role pair, we found the top 20 candidate nouns for
each tensor and used the Jaccard index (size of intersection divided by size of union)
between them as a measure of overlap. For each dataset, we report the average Jaccard
index. What we find is that the average Jaccard indices are never more than 50%—the
intersections are always much smaller than the unions. What stands out is that Ferretti
instruments, which experiences the largest changes due to swapping noun candidates,
also has by far the lowest Jaccard index.

To illustrate this, we took at look at the verb “call”. In the instruments dataset, to
call with paper or to call with a radio is rated poorly by humans (2.5/7 each), whereas
to call with a telephone or a voice is given very high ratings (6.9 and 6.9 respectively).
TypeDMSDDM does poorly on this: calling with paper is rated much higher (39%) than
calling with a voice or a telephone (24% and 31%). SDDMTypeDM does well, giving 4%
ratings to calling with paper and radio and 16% and 24% ratings to telephone and voice
(the relative ranking is what matters to ρ, not the absolute cosines). The overlap between
the top 20 noun candidates of TypeDM and SDDM is very poor, with a Jaccard index of
only 8%.

Qualitatively, TypeDM chooses much better typical instruments of “call”, such as
“message” and “enquiry”. However, SDDMTypeDM still outperforms TypeDM alone
on instruments. The centroid from SDDMTypeDM still consists of statistics collected for
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the Malt-only SDDM. In other words, the vectors of SDDM produce better results than
TypeDM’s vectors for instruments after we apply TypeDM’s typical noun candidates.

It thus appears that candidate selection and centroid construction are separable
from one another, and that while TypeDM seems to produce better noun candidates
for some of the datasets, Malt-only SDDM’s semantic space can sometimes be superior
for the thematic fit task.

6.4 Coverage

All the datasets presented here have a coverage in the above 95% range over all items.

7. Conclusions

In this work, we constructed a number of DM tensors based on SENNA-annotated
thematic roles in the process of probing the feature space for their use in thematic fit
evaluation. We find that combining the output of SENNA with MaltParser dependency
link information provides a boost in thematic fit performance in some well-studied
datasets such as the Padó data (over and above TypeDM) and the Ferretti instrument
data, but other feature selections provide improvements in the Ferretti location data.

The linking thematic roles used to construct these tensors are not further augmented
by hand-crafted inference rules making them similar to Baroni and Lenci’s DepDM. All
of them easily exceed DepDM on the Padó data set. When used in combination with
TypeDM in an unsupervised score averaging process, we find that the fit to human
judgements improves for some datasets and declines for other data sets, particularly the
Greenberg data. On the whole, we find that the SDDM tensors encode a different part
of linguistic experience from the explcitly syntax-based TypeDM in the fine structure
of dimensions they contain. Using the semantic space of SDDM with the prototypical
role-filler candidate noun selection of TypeDM improves the performance of SDDM on
some data sets, particularly instruments, showing that candidate selection and vector
component calculation can be strategically separated.

This work made use of Baroni and Lenci’s thematic fit evaluation process just as
they describe it. However, future work could include testing out the augmented ver-
sions of this algorithm that involve clustering the vectors that go into centroid formation
to produce multiple centroids reflecting verb senses (Greenberg, Sayeed, and Demberg
2015). A further item of future work would be to understand why the Greenberg data
works better with the linear head-finding (as opposed ot the Malt-based head-finding),
despite its overall similarity to the Padó data.
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This paper analyzes the concept of opposition and describes a fully unsupervised method 
for its automatic discrimination from near-synonymy in Distributional Semantic Models 
(DSMs). The discriminating method is based on the hypothesis that, even though both 
near-synonyms and opposites are mostly distributionally similar, opposites are different 
from each other in at least one dimension of meaning, which can be assumed to be salient. 
Such hypothesis has been implemented in APAnt, a distributional measure that evaluates 
the extent of the intersection among the most relevant contexts of two words (where 
relevance is measured as mutual dependency), and its saliency (i.e. their average rank in 
the mutual dependency sorted list of contexts). The measure – previously introduced in 
some pilot studies – is presented here with two variants. Evaluation shows that it 
outperforms three baselines in an antonym retrieval task: the vector cosine, a baseline 
implementing the co-occurrence hypothesis, and a random rank. This paper describes the 
algorithm in details and analyzes its current limitations, suggesting that extensions may 
be developed for discriminating antonyms not only from near-synonyms but also from 
other semantic relations. During the evaluation, we have noticed that APAnt also has a 
particular preference for hypernyms. 

1. Introduction 

Similarity is one of the fundamental principles organizing the semantic lexicon 
(Lenci, 2008; Landauer and Dumais, 1997). Distributional Semantic Models (DSMs) 
encoding the frequency of co-occurrences between words in large corpora are 
proven to be successful in representing word meanings in terms of distributional 
similarity (Turney and Pantel, 2010; Pado ́ and Lapata, 2007; Sahlgren, 2006). 

These models allow a geometric representation of the Distributional Hypothesis 
(Harris, 1954), that is, words occurring in similar contexts also have similar 
meanings. They represent words as vectors in a continuous vector space, where 
distributional similarity can be measured as vector proximity. This, in turn, can be 
calculated through the vector cosine (Turney and Pantel, 2010). This representation 
is so effective that DSMs are known to be able to replicate human judgments with 
a reasonable accuracy (Lenci, 2008). 
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However, the Distributional Hypothesis shapes the concept of similarity in a 
very loose way, including among the distributionally similar words not only those 
that refer to similar referents (e.g. co-hyponyms and near-synonyms), but – more 
in general – all those words that share many contexts (Harris, 1954). As a 
consequence of such definition, words like dog may be considered similar not only 
to the co-hyponym lexeme cat, but also to the hypernym animal, the meronym tail 
(Morlane-Hondère, 2015), and so on. This loose definition, therefore, poses a big 
challenge in Natural Language Processing (NLP), and in particular in 
Computational Lexical Semantics, where the meaning of a word and the type of 
relations it holds with others need to be univocally identified. For instance, in a 
task such as Textual Entailment it is crucial not only to identify whether two words 
are semantically similar, but also whether they entail each other, like hyponym-
hypernym pairs do. Similarly, in Sentiment Analysis the correct discrimination of 
antonyms (e.g. good from bad) is extremely important to identify the positive or 
negative polarity of a text. 

Among the relations that fall under the large umbrella of distributional 
similarity, there is indeed opposition, also known as antonymy. According to Cruse 
(1986), antonymy is characterized by the paradox of simultaneous similarity and 
difference: Opposites are identical in every dimension of meaning except for one. A 
typical example of such paradox is the relation between dwarf and giant. These 
words are semantically similar in many aspects (i.e. they may refer to similar 
entities, such as humans, trees, galaxies), differing only for what concerns the size, 
which is assumed to be a salient semantic dimension for them. Distributionally 
speaking, dwarfs and giants share many contexts (e.g., both giant and dwarf may be 
used to refer to galaxies, stars, planets, companies, people1), differing for those related 
to the semantic dimension of size. For example, giant is likely to occur in contexts 
related to big sizes, such as global, corporate, dominate and so on2, while dwarf is 
likely to occur in contexts related to small sizes, such as virus, elf, shrub and so on3.  

Starting from this observation, we describe and analyze a method aiming to 
identify opposites in DSMs. The method, which is directly inspired to Cruse’s 
paradox, is named APAnt (from Average Precision for Antonyms) and lies on the 
hypothesis that antonyms share less salient contexts than synonyms. The method 
was first presented in two previous pilot studies of Santus et al. (2014b, 2014c). In 
those papers, APant  was shown to outperform the vector cosine and a baseline 
implementing the co-occurrence hypothesis (Charles and Miller, 1989) in an antonym 
retrieval task (AR), using a standard window-based DSM, built by collecting the 
co-occurrences between the two content words on the left and the right of the 
target word, in a combination of ukWaC and WaCkypedia (Santus et al., 2014a)4. 
The task was performed using the Lenci/Benotto dataset (Santus et al., 2014b) and 
evaluated through Average Precision (AP; Kotlerman et al., 2010). 

In this paper, we first give a more detailed description of APAnt presenting 
also two variants. All the measures are evaluated in two antonym retrieval tasks, 
performed on an extended dataset, which includes antonyms, synonyms, 
hypernyms and co-hyponyms (henceforth, also referred as coordinates, according 
to Baroni and Lenci, 2011) from the Lenci/Benotto (Santus et al., 2014b), BLESS 
(Baroni and Lenci, 2011) and EVALution 1.0 (Santus et al., 2015). Again, APAnt 

                                                        
1 These examples were found by searching in Sketch Engine (https://www.sketchengine.co.uk), using the 
word sketch function. 
2 Ibid. 
3 Ibid. 
4  Similar experiments on a standard five content words window DSM have confirmed that APAnt 
outperforms the vector cosine and the co-occurrence baseline. The actual impact of the window size still needs 
to be properly analyzed. 
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outperforms the above-mentioned baselines plus another one based on random 
ranking. 

The paper is organized as follows. In the next section, we define opposites and 
their properties (Section 2), moving then to the state of the art for their 
discrimination (Section 3). We introduce our method and its variations (Section 4) 
and describe their evaluation (Section 5). A detailed discussion of the results 
(Sections 6 and 7) and the conclusions are reported at the end of the paper 
(Conclusions). 

2. Opposites 

People do not always perfectly agree on classifying word pairs as opposites 
(Mohammad et al., 2013), confirming that their identification is indeed a hard task, 
even for native speakers. The major problems in such task are that (1) opposites 
are rarely in a truly binary contrast (e.g. warm/hot); (2) the contrast can be of 
different kinds (e.g. semantic, as in hot/cold, or referential, as in shark/dolphin); and 
(3) opposition is often context-dependent (e.g. consider the near-synonyms very 
good and excellent in the following sentence: “not simply very good, but excellent”; 
Cruse, 1986; Murphy, 2003). All these issues make opposites difficult to define, so 
that linguists often need to rely on diagnostic tests to make the opposition clear 
(Murphy, 2003). 

Over the years, many scholars from different disciplines have tried to provide 
a precise definition of this semantic relation. They are yet to reach any conclusive 
agreement. Kempson (1977) defines opposites as word pairs with a “binary 
incompatible relation”, such that the presence of one meaning entails the absence 
of the other. In this sense, giant and dwarf are good opposites, while giant and 
person are not. Mohammad et al. (2013), noticing that the terms opposites, 
contrasting and antonyms have often been used interchangeably, have proposed the 
following distinction: (1) opposites are word pairs that are strongly incompatible 
with each other and/or are saliently different across a dimension of meaning; (2) 
contrasting word pairs have some non-zero degree of binary incompatibility and/or 
some non-zero difference across a dimension of meaning; (3) antonyms are 
opposites that are also gradable adjectives. They have also provided a simple but 
comprehensive classification of opposites based on Cruse (1986), including (1) 
antipodals (e.g. top-bottom), pairs whose terms are at the opposite extremes of a 
specific meaning dimension; (2) complementaries (e.g. open-shut), pairs whose terms 
divide the domain in two mutual exclusive compartments; (3) disjoints (e.g. hot-
cold), pairs whose words occupy non-overlapping regions in a specific semantic 
dimension, generally representing a state; (4) gradable opposites (e.g. long-short), 
adjective- or adverb-pairs that gradually describe some semantic dimensions, such 
as length, speed, etc.; (5) reversibles (e.g. rise-fall), verb-pairs whose words 
respectively describe the change from state A to state B and the inverse, from state 
B to state A. 

In this paper, we will not account for all these differences, but we will use the 
terms opposites and antonyms as synonyms, meaning all pairs of words in which a 
certain level of contrast is perceived. Under such category we include also the 
paranyms, which are a specific type of coordinates (Huang et al., 2007) that 
partition a conceptual field into complementary subfields. For instance, although 
dry season, spring, summer, autumn and winter are all co-hyponyms, only the latter 
four are paranyms, as they split the conceptual field of seasons. 
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3. Related Works 

Opposites identification is very challenging for computational models 
(Mohammad et al., 2008; Deese, 1965; Deese, 1964). Yet, this relation is essential for 
many NLP applications, such as Information Retrieval (IR), Ontology Learning (OL), 
Machine Translation (MT), Sentiment Analysis (SA) and Dialogue Systems (Roth and 
Schulte im Walde, 2014; Mohammad et al., 2013). In particular, the automatic 
identification of semantic opposition is crucial for the detection and generation of 
paraphrases (i.e. during the generation, similar but contrasting candidates should 
be filtered out, as described in Marton et al., 2011), the understanding of 
contradictions (de Marneffe et al., 2008) and the identification of irony (Xu et al., 
2015; Tungthamthiti et al., 2015) and humor (Mihalcea and Strapparava, 2005). 

Several existing hand-crafted computational lexicons and thesauri explicitly 
encoding opposition are often used to support the above mentioned NLP tasks, 
even though many scholars have shown their limits. Mohammad et al. (2013), for 
example, point out that “more than 90% of the contrasting pairs in GRE closest-to-
opposite questions 5  are not listed as opposites in WordNet”. Moreover, the 
relations encoded in such resources are mostly context independent. 

Given the already mentioned reliability of Distributional Semantic Models 
(DSMs) in the detection of distributional similarity between lexemes, several 
studies have tried to exploit these models for the identification of semantic 
relations (Santus et al., 2014a; Baroni and Lenci, 2010; Turney and Pantel, 2010; 
Padó and Lapata, 2007; Sahlgren, 2006). As mentioned before, however, DSMs are 
characterized by a major shortcoming. That is, they are not able to discriminate 
among different kinds of semantic relations linking distributionally similar 
lexemes (Santus et al., 2014a). This is the reason why supervised and pattern-based 
approaches have often been preferred (Pantel and Pennacchiotti, 2006; Hearst, 
1992). However, these latter methods have also various problems, most notably 
the difficulty of finding patterns that are highly reliable and univocally associated 
with specific relations, without incurring at the same time in data-sparsity 
problems. The experience of pattern-based approaches has shown that these two 
criteria can rarely be satisfied simultaneously. 

The foundation of most corpus-based research on opposition is the co-
occurrence hypothesis (Lobanova, 2012), formulated by Charles and Miller (1989) 
after observing that opposites co-occur in the same sentence more often than 
expected by chance. Such claim has then found many empirical confirmations 
(Justeson and Katz, 1991; Fellbaum, 1995) and it is used in the present work as a 
baseline. Ding and Huang (2014; 2013) also pointed out that, unlike co-hyponyms, 
opposites generally have a strongly preferred word order when they co-occur in a 
coordinate context (i.e. A and/or B). Another part of related research has been 
focused on the study of lexical-syntactic constructions that can work as linguistic 
tests for opposition definition and classification (Cruse, 1986). 

Starting from all these observations, several computational methods for 
opposition identification were implemented. Most of them rely on patterns 
(Schulte im Walde and Köper, 2013; Lobanova et al., 2010; Turney, 2008; Pantel 
and Pennacchiotti, 2006; Lin et al., 2003), which unfortunately suffer from low 
recall, because they can be applied only to frequent words. Others, like Lucerto et 
al. (2002), use the number of tokens between the target words and other clues (e.g. 
the presence/absence of conjunctions like but, from, and, etc.) to identify 
contrasting words. 

                                                        
5 GRE stands for Graduate Record Examination, which is a standardized test, often used as an admissions 
requirement for graduate schools in the United States. 
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Turney (2008) proposed a supervised algorithm for the identification of several 
semantic relations, including synonyms and opposites. The algorithm relied on a 
training set of word pairs with class labels to assign the labels also to a testing set 
of word pairs. All word pairs were represented as vectors encoding the 
frequencies of co-occurrence in textual patterns extracted from a large corpus of 
web pages. He used the sequential minimal optimization (SMO) support vector 
machine (SVM) with a radial basis function (RBF) kernel (Platt, 1998) implemented 
in Weka (Waikato Environment for Knowledge Analysis) (Witten and Frank, 1999). 
In the discrimination between synonyms and opposites, the system achieved an 
accuracy of 75% against a majority class baseline of 65.4%. 

Mohammad et al. (2008) proposed a method for determining the degree of 
semantic contrast (i.e. how much two contrasting words are semantically close) 
based on the use of thesauri categories and corpus statistics. For each target word 
pair, they used the co-occurrence and the distributional hypothesis to establish the 
degree of opposition. Their algorithm achieved an F-score of 0.7, against a random 
baseline of 0.2. 

Mohammad et al. (2013) used an analogical method based on a given set of 
contrasting words to identify and classify different kinds of opposites by 
hypothesizing that for every opposing pair of words, A and B, there is at least 
another opposing pair, C and D, such that A is similar to C and B is similar to D. 
For example, for the pair night-day, there is the pair darkness-daylight, such that 
night is similar to darkness and day to daylight. Given the existence of contrast, they 
calculated its degree relying on the co-occurrence hypothesis. Their approach 
outperformed other state-of-the-art measures. 

Schulte im Walde and Köper (2013) proposed a vector space model relying on 
lexico-syntactic patterns to distinguish between synonymy, antonymy and 
hypernymy. Their approach was tested on German nouns, verbs and adjectives, 
achieving a precision of 59.80%, which was above the majority baseline. 

More recently, Roth and Schulte im Walde (2014) proposed that statistics over 
discourse relations can be used as indicators for paradigmatic relations, including 
opposition. 

4. Our Method: APAnt 

Starting from the already mentioned paradox of simultaneous similarity and difference 
between antonyms (Cruse, 1986), in Santus et al. (2014b, 2014c) we have proposed a 
distributional measure that modifies the Average Precision formula (Kotlerman et 
al., 2010) to discriminate antonyms from near-synonyms. APAnt, from Average 
Precision for Antonymy, takes into account two main factors: i) the extent of the 
intersection among the N most relevant contexts of two words (where relevance is 
measured as mutual dependency); and ii) the salience of such intersection (i.e. the 
average rank in the mutual dependency sorted list of contexts). These factors are 
considered under the hypothesis that near-synonyms are likely to share a larger 
part of the salient contexts compared to antonyms. 

In this section, we describe in details the APAnt algorithm, proposing also two 
variants aimed to improve APAnt stability and extend its scope. They will be 
named with an increasing number, APAnt2 (which consists in a simple 
normalization of APAnt) and APAnt3 (which introduces a new factor to APAnt2, 
that is, the distributional similarity among the word pairs). 

APAnt should be seen as the inverse of APSyn (Average Precision for Synonymy). 
While APSyn assigns higher scores to near-synonyms, APAnt assigns higher scores 
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to antonyms. Such scores can then be used for semantic relations discrimination 
tasks. Given a target pair !!and !! , APSyn first selects the N most relevant 
contexts for each of the two terms. N should be large enough to sufficiently 
describe the distributional semantics of a term for a given purpose. Relevance is 
calculated in terms of Local Mutual Information (LMI; Evert, 2005), which is a 
measure that describes the mutual dependence between two variables, like 
pointwise mutual information, while avoiding the bias of the latter towards low 
frequency items. In our experiments we have chosen some values of N (N=50, 100, 
150, 200 and 250), and we leave the optimization of this parameter for future 
experiments. 

Once the N most relevant contexts of !!and !! have been selected, APSyn 
calculates the extent of their intersection, by summing up for each intersected 
context a function of its salience score. The idea behind such operation is that 
synonyms are likely to share more salient contexts than antonyms. For example, 
dress and clothe are very likely to have among their most relevant contexts words 
like wear, thick, light and so on. On the other hand, dwarf and giant will probably 
share contexts like eat and sleep, but they will differ on other very salient contexts 
such as big and small. To exemplify such idea, in Table 1 we report the first 16 most 
relevant contexts for the pairs of verbs fall-lower and fall-raise, respectively near-
synonyms and antonyms. 

 
 
 

Table 1 
Top 16 contexts for the verbs to fall, to lower and to raise. These terms 
are present in our dataset. At this cutoff, the antonyms do not yet share any context. 

 
TARGET SYNONYM ANTONYM 

fall-v lower-v (2 shared) raise-v (0 shared) 

1. love-n 
2. category-n 
3. short-j 
4. disrepair-n 
5. rain-n 
6. victim-n 
7. price-n (rank=7) 
8. disuse-n 
9. cent-n 
10. rise-v 
11. foul-j 
12. hand-n 
13. trap-n 
14. snow-n 
15. ground-n 
16. rate-n (rank=16) 
17. … 

1. cholesterol-n 
2. raise-v 
3. level-n 
4. blood-n 
5. cost-n 
6. pressure-n 
7. rate-n (rank=7) 
8. price-n (rank=8) 
9. risk-n 
10. temperature-n 
11. water-n 
12. threshold-n 
13. standard-n 
14. flag-n 
15. age-n 
16. lipid-n 
17. … 

1. awareness-n 
2. fund-n 
3. money-n 
4. issue-n 
5. question-n 
6. concern-n 
7. profile-n 
8. bear-v 
9. standard-n 
10. charity-n 
11. help-v 
12. eyebrow-n 
13. level-n 
14. aim-v 
15. point-n 
16. objection-n 
17. … 

 
 
APSyn weights the saliency of the contexts with the minimum rank among the 

two LMI ranked lists, containing the N most relevant contexts for !!and !! . 
Mathematically, APSyn can be defined as follows: 
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to antonyms. Such scores can then be used for semantic relations discrimination 
tasks. Given a target pair !!and !! , APSyn first selects the N most relevant 
contexts for each of the two terms. N should be large enough to sufficiently 
describe the distributional semantics of a term for a given purpose. Relevance is 
calculated in terms of Local Mutual Information (LMI; Evert, 2005), which is a 
measure that describes the mutual dependence between two variables, like 
pointwise mutual information, while avoiding the bias of the latter towards low 
frequency items. In our experiments we have chosen some values of N (N=50, 100, 
150, 200 and 250), and we leave the optimization of this parameter for future 
experiments. 
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calculates the extent of their intersection, by summing up for each intersected 
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like wear, thick, light and so on. On the other hand, dwarf and giant will probably 
share contexts like eat and sleep, but they will differ on other very salient contexts 
such as big and small. To exemplify such idea, in Table 1 we report the first 16 most 
relevant contexts for the pairs of verbs fall-lower and fall-raise, respectively near-
synonyms and antonyms. 

 
 
 

Table 1 
Top 16 contexts for the verbs to fall, to lower and to raise. These terms 
are present in our dataset. At this cutoff, the antonyms do not yet share any context. 
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13. standard-n 
14. flag-n 
15. age-n 
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!"#$%(!!,!!) =  !

!"# (!"#$! !! ,!"#$! !! ) !∈!(!!)∩!(!!)   (1) 
 

where !(!!) is the list of the ! most relevant contexts f of a term !!, and !"#$!(!!) 
is the rank of the feature !! in such salience ranked feature list. It is important to 
note here that a small N would inevitably reduce the intersection, forcing most of 
the scores to the same values (and eventually to zero), independently on the 
relation the pair under examination holds. On the other hand, a very large value of 
N will inevitably include also contexts with very low values of LMI and, therefore, 
much less relevant for the target noun. Finally, it can be seen that APSyn assigns 
the highest scores to the identity pairs (e.g. dog-dog). 

If APSyn assigns high scores to the near-synonyms, its inverse – APAnt – is 
intended to assign high scores to the antonyms: 

 
!"!#$(!!,!!) = !

!"#$%(!!,!!)
  (2) 

 
Two cases need to be considered here: 
• if APSyn has not found any intersection among the N most relevant 

contexts, it will be set to zero, and consequently APAnt will be infinite; 

• if APSyn has found a large and salient intersection, it will get a high value, 
and consequently APAnt will have a very low one. 

The first case happens when the two terms in the pair are distributionally 
unrelated or when N is not sufficiently high. Therefore, APant is set to the 
maximum attested value. The second case, instead, can occur when two terms are 
distributionally very similar, sharing therefore many salient contexts. Ideally, this 
should only be the case for near-synonyms. 

As we will see in Section 7, most of the scores given by APSyn and APAnt are 
either very high or very low. In order to scale them between 0 and 1, we use the 
Min-Max function (our infinite values will be set – together with the maximum 
ones – to 1): 

 
!"#!$% !! =  !!!!"# (!)

!"# ! !!"# (!) (3) 
 
Two variants of APSyn (and consequently of APAnt) have been also tested: 

APSyn2 and APSyn3. Below we define them with the same notation as in the 
equation (1), while APAnt2 and APAnt3 can be defined as their respective 
reciprocal: 

 
!"#$%2(!!,!!) =  !

(!"#$! !! !!"#$! !! )/! !∈!(!!)∩!(!!)  (4) 
 

!"#$%3(!!,!!) =  !"# (!!,!!)
(!"#$! !! !!"#$! !! )/! !∈!(!!)∩!(!!)  (5) 

 
The first variant simply uses the average rank rather than the minimum one, as 

a saliency index. The second variant introduces the use of the cosine as numerator 
instead of simply using the constant 1. While APSyn2 is mainly meant to 
normalize APSyn’s denominator, APSyn3 introduces a new criterion for measuring 
the distributional similarity between the pairs. In fact, both strongly and weakly 
related pairs may share some relevant contexts. If the extent of such sharing is not 
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enough discriminative, the use of the vector cosine adds a discriminative criterion, 
which should assign higher scores to strongly related pairs. 

5. Performance Evaluation 

In order to evaluate APAnt and its variants, we set up two antonym retrieval tasks 
(AR). These two tasks consist of scoring pairs of words belonging to known 
semantic relations with APAnt, its variants and three baselines (i.e. vector cosine, 
frequency of co-occurrence, random rank), and then evaluate the resulting ranks with 
the Average Precision (AP; Kotlerman et al., 2010). In task 1, we only evaluate ranks 
consisting of pairs related by antonymy and synonymy, whereas in task 2 we also 
introduce hypernymy and co-hyponymy (henceforth, coordination). 
 
DSM. In our experiments, we use a standard window-based DSM recording word 
co-occurrences within the two nearest content words to the left and right of each 
target. Co-occurrences are extracted from a combination of the freely available 
ukWaC and WaCkypedia corpora (with 1.915 billion and 820 million words, 
respectively) and weighted with LMI (Santus et al., 2014a). 
 
DATASETS. To assess APAnt, we rely on a joint dataset consisting of subsets of 
English word pairs extracted from the Lenci/Benotto dataset (Santus et al., 2014b), 
BLESS (Baroni and Lenci, 2011) and EVALution 1.0 (Santus et al., 2015). Our final 
dataset for task 1 contains 4,735 word pairs, including 2,545 antonyms and 2,190 
synonyms. The class of antonyms consists of 1,427 noun pairs (e.g. parody-reality), 
420 adjective pairs (e.g. unknown-famous) and 698 verb pairs (e.g. try-procrastinate). 
The class of synonyms consists of 1,243 noun pairs (e.g. completeness-entirety), 397 
adjective pairs (e.g. determined-focused) and 550 verb pairs (e.g. picture-illustrate). 

For task 2, we aimed at discriminating antonyms also from relations other than 
synonyms. Thus, we also include 4,261 hypernyms from the Lenci/Benotto dataset, 
BLESS and EVALution, and 3,231 coordinates from BLESS. The class of 
hypernyms consists of 3,251 noun pairs (e.g. violin-instrument), 364 adjective pairs 
(e.g. able-capable) and 646 verb pairs (e.g. journey-move). The coordinates only 
include noun pairs (e.g. violin-piano). 

 
EVALUATION MEASURE and BASELINES. The ranks obtained by sorting the 
scores in a decreasing way were then evaluated with Average Precision (Kotlerman 
et al., 2010), a measure used in Information Retrieval (IR) to combine precision, 
relevance ranking and overall recall. Since APAnt has been designed to identify 
antonyms, we would expect AP=1 if all antonyms are on top of our rank, AP=0 if 
they are all placed in the bottom. 

Finally, for both tasks we have used three baselines for performance 
comparison: vector cosine, co-occurrence frequency and random rank. While the vector 
cosine is motivated by the fact that antonyms have a high degree of distributional 
similarity, the random rank should keep information about the different sizes of the 
classes. The frequency of co-occurrence, then, is motivated by the co-occurrence 
hypothesis (Charles and Miller, 1989). Our implementation of such baseline is 
supported by several examples in Justeson and Katz (1991), where the co-
occurrence is mostly found within the window adopted in our DSM (e.g. 
coordination, etc.). 
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6. Experimental Results 

In Table 2, we report the AP values for all the variants of APAnt and the baselines. 
Since the Average Precision values may be biased by pairs obtaining the same 
scores – in these cases, in fact, the rank cannot be univocally determined, except by 
assigning it randomly or adding a new criterion (we have adopted the alphabetic 
one) –, for every measure, we provide information about how many pairs have 
identical scores. As it can be seen in the table, when N is big enough (in our case 
N>=200), APAnt has less identical scores than the vector cosine. 
 

 
 
Table 2 
AP scores for APAnt, its variants and the baselines on the dataset containing 4,735 word pairs, 
including 2,545 antonyms and 2,190 synonyms. The second column contains the values of N 
(only for APAnt) and – between brackets – the quantity of pairs having identical scores. Note: 
three values are provided for APAnt (i.e. one for each variant), while for the other measures only 
one. 
 

MEASURE N (Pairs with identical score: 
APAnt, APAnt2, APAnt3) 

Antonyms 
(APAnt2, 
APAnt3) 

Synonyms 
(APAnt2, 
APAnt3) 

APAnt 50 (1672, 1374, 703) 0.60 (0.60, 0.60) 0.41 (0.41, 0.41) 
APAnt 100 (339, 274, 180) 0.60 (0.60, 0.60) 0.41 (0.41, 0.41) 
APAnt 150 (118, 96, 86) 0.60 (0.61, 0.60) 0.41 (0.40, 0.41) 
APAnt 200 (75, 67, 64) 0.61 (0.61, 0.60) 0.40 (0.40, 0.41) 
APAnt 250 (75, 67, 64) 0.61 (0.61, 0.60) 0.40 (0.40, 0.41) 

Co-occurrence (3591) 0.54 0.46 
Cosine (85) 0.50 0.50 

Random (3) 0.55 0.45 
 

 
APAnt and its variants obtain almost the same AP scores, outperforming all the 

baselines. APAnt3 seems to perform slightly worse than the other variants. Given 
that our dataset contains few more antonyms than synonyms, we expect the 
random rank to have a certain preference for antonyms. This is, in fact, what 
happens, making the random baseline outperforming the co-occurrence baseline. 
The vector cosine, instead, has a preference for synonyms, balancing the AP 
independently of the different sizes of the two classes. Finally, we can notice that 
while the values of N seem to have a small impact on the performance, they have a 
high impact in reducing the number of identical scores. That is, the larger the 
value of N, the less pairs have identical scores. Co-occurrence frequency is the 
worst measure in this sense, since almost 76% of the pairs obtained identical scores. 
Such a high number has to be attributed to the sparseness of the data and may be 
eventually reduced by choosing a larger window in the construction of the DSM. 
However, this also shows that use of co-occurrence data alone may be of little help 
in discriminating antonyms from other semantic relations. 

In Table 3 we report the AP scores for the second AR task, which is performed 
on a dataset including also hypernyms and coordinates. Again, APAnt and its 
variants outperform the baselines. APAnt3 is confirmed to work slightly worse 
than the other variants. An interesting and unexpected result is obtained for the 
hypernyms. Even though their class is almost twice the size of antonyms and 
synonyms (this can be seen also in the AP scores obtained by the baselines), this 
result is important and it will be discussed in Section 7. Once more, the AP value 
for the random rank is proportional to the sizes of the classes. Co-occurrence 
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frequency seems to have a slight preference for antonyms and hypernyms (which 
may be due to the size of these classes), while the vector cosine seems to prefer 
synonyms and coordinates. 

 
 

 
Table 3 
AP scores for the APAnt, its variants and the baselines on the dataset containing 12,227 word 
pairs, including 4,261 hypernyms and 3,231 coordinates. The second column contains the values 
of N (only for APAnt) and – between brackets – the quantity of pairs having identical scores. 
Note: three values are provided for APAnt (i.e. one for each variant), while for the other 
measures only one. 
 

MEASURE 

N (Pairs with 
identical score: 

APAnt, 
APAnt2, 
APAnt3) 

Antonyms 
(APAnt2, 
APAnt3) 

Synonyms 
(APAnt2, 
APAnt3) 

Hypernyms 
(APAnt2, 
APAnt3) 

Coordinates 
(APAnt2, 
APAnt3) 

APAnt 50 (5543, 4756, 
3233) 0.26 (0.27, 0.26) 0.18 (0.18, 0.18) 0.42 (0.43, 0.42) 0.18 (0.18, 0.18) 

APAnt 100 (2600, 2449, 
2147) 0.27 (0.27, 0.26) 0.18 (0.18, 0.18) 0.43 (0.44, 0.43) 0.18 (0.17, 0.18) 

APAnt 150 (2042, 1987, 
1939) 0.27 (0.28, 0.26) 0.18 (0.18, 0.18) 0.43 (0.44, 0.42) 0.18 (0.17, 0.18) 

APAnt 200 (1951, 1939, 
1907) 0.28 (0.28, 0.26) 0.18 (0.18, 0.18) 0.43 (0.44, 0.42) 0.17 (0.17, 0.18) 

APAnt 250 (1939, 1901, 
1892) 0.28 (0.28, 0.26) 0.18 (0.18, 0.18) 0.43 (0.44, 0.42) 0.17 (0.17, 0.18) 

Co-occ. (10760) 0.23 0.19 0.36 0.23 
Cosine (2096) 0.20 0.20 0.31 0.29 

Random (15) 0.21 0.18 0.35 0.26 
 

 
 
Once more, the values of N do not significantly affect the AP scores, but they 

influence the number of identical scores (N>=150 is necessary to have less identical 
scores than those obtained with the vector cosine). Co-occurrence frequency is again 
the worst measure in this sense, since it has as many as 10,760 pairs with the same 
score on 12,227 (88%). 

7. Discussion and Distribution of Scores 

The AP scores shown and discussed in the previous section confirm that 
APAnt assigns higher scores to antonyms compared to both synonyms and 
coordinates. Such results is coherent with our hypothesis that antonyms share less 
relevant contexts than both synonyms and coordinates. Figure 1 shows boxplots6 
describing the distribution of scores for APAnt (on the left) and vector cosine (on the 
right). As it can be seen, APAnt scores are – on average – higher for antonymy, 
while the vector cosine scores are similarly distributed for both relations. 

A surprising result instead occurs for the class of hypernyms, as shown in 
Table 3, to which APAnt assigns high scores. Although such class is almost twice 
the size of both antonyms and synonyms, the APAnt AP score for such class is 
much higher than the AP scores assigned to the baselines, even overcoming the 

                                                        
6 Boxplots display the median of a distribution as a horizontal line within a box extending from the first to 
the third quartile, with whiskers covering 1.5 times the interquartile range in each direction from the box, 
and outliers plotted as circles. 
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coordinates. Such results is coherent with our hypothesis that antonyms share less 
relevant contexts than both synonyms and coordinates. Figure 1 shows boxplots6 
describing the distribution of scores for APAnt (on the left) and vector cosine (on the 
right). As it can be seen, APAnt scores are – on average – higher for antonymy, 
while the vector cosine scores are similarly distributed for both relations. 
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much higher than the AP scores assigned to the baselines, even overcoming the 

                                                        
6 Boxplots display the median of a distribution as a horizontal line within a box extending from the first to 
the third quartile, with whiskers covering 1.5 times the interquartile range in each direction from the box, 
and outliers plotted as circles. 
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value reached with antonyms. The reason may be that hypernymy related pairs – 
even though they are known to be characterized by high distributional similarity – 
do not share many salient contexts. In other words, even though hypernyms are 
expected to share several contexts, they do not seem to share a large amount of 
their most mutually dependent ones. That is, contexts that are salient for one of the 
two terms (e.g. wild for the hypernym animal) are not necessarily salient for the 
other one (e.g. the hyponym dog), and viceversa (e.g. bark is not salient for the 
hypernym animal, while it is for the hyponym dog). This result is coherent with 
what we have found in Santus et al. (2014a), where we have shown how 
hypernyms tend to co-occur with more general contexts compared to hyponyms, 
which are instead likely to occur with less general ones. More investigation is 
required in this respect, but it is possible that APAnt (or its variants) can be used in 
combination with other measures (e.g. SLQS or entropy) for discriminating also 
hypernymy. 

 

  
 
Figure 1 
APAnt scores (on the left) for N=50 and vector cosine ones (on the right). 

 
 
Another relevant point is the role of N. As it can be seen from the results, it has 

a low impact on the AP values, meaning that the rank is not strongly affected by 
its change (at least for what concerns the values we have tested, which are 50, 100, 
150, 200 and 250). However, the best results are generally obtained with N>150. 
The value of N is instead inversely proportional to the number of identical scores 
(the same can be said also for the two variants, APAnt2 and APAnt3, which 
generates slightly fewer identical scores than APAnt). 

For what concerns the variants, APAnt2 and APAnt3 have been shown to 
perform in a very similar way to APAnt. APAnt3, in particular, achieves slightly 
worse results than the other two measures in the second task. We believe that this 
measure should be tested against other semantic relations in the future. 

Finally, during our experiments, we have found that AP may be subjected to a 
bias that is concerned with how to rank pairs that have obtained the same score. In 
this case, we have used the alphabetical order as the secondary criterion for 
ranking. Such criterion does not affect the evaluation of APAnt (including its 
variants) and vector cosine, as these measures assign a fairly small amount of 
identical scores (around 15% of 12,227 pairs). It instead certainly affects the 
reliability of the co-occurrence frequency, where the amount of pairs obtaining 
identical scores amount up to 88%. Even though such result is certainly imputable 
to the sparseness of the data, we should certainly consider whether the co-
occurrence frequency can properly account for antonymy. 
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8. Conclusions 

In this paper, we have further described and analyzed APAnt, a distributional 
measure firstly introduced in Santus et al. (2014b, 2014c). Two more variants have 
been proposed for the normalization of APAnt and for the extension of its scope to 
the discrimination of antonymy from semantic relations other than synonymy. 
APAnt and its variants have been shown to outperform several baselines in our 
experiments. Surprisingly, they seem to assign high scores to hypernyms, which 
do probably share few salient contexts too. This fact suggests the need for further 
refinement of the APant. 

APAnt should not be considered as the final result of this research, but much 
more as a work in progress. It should be further explored and improved to put 
light on some distributional properties of antonymy and other semantic relations, 
which can be exploited to develop a unified method that may account for issues 
that are currently treated as separate tasks, such as sense disambiguation and 
semantic relations identification. In this sense, we believe that there are many 
properties that need to be further explored by looking at the most relevant 
contexts of each term, rather than at their full set. Such exploration and 
investigation should be linguistically grounded and should aim not only to the 
improvement of algorithms’ performance, but also to a better understanding of the 
linguistic properties of semantic relations. 
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During the last decade the surge in available data spanning different epochs has inspired a new
analysis of cultural, social, and linguistic phenomena from a temporal perspective. This paper
describes a method that enables the analysis of the time evolution of the meaning of a word.
We propose Temporal Random Indexing (TRI), a method for building WordSpaces that takes
into account temporal information. We exploit this methodology in order to build geometrical
spaces of word meanings that consider several periods of time. The TRI framework provides all
the necessary tools to build WordSpaces over different time periods and perform such temporal
linguistic analysis. We propose some examples of usage of our tool by analysing word meanings
in two corpora: a collection of Italian books and English scientific papers about computational
linguistics. This analysis enables the detection of linguistic events that emerge in specific time
intervals and that can be related to social or cultural phenomena.

1. Introduction

Imagine the Time Traveller of H.G. Wells’ novel who takes a journey to year 2000 in a quest for
exploring how the seventh art has evolved in the future. Nowadays, since looking for “moving
picture” would produce no results, he would have probably come back to the past believing
that the cinematography does not exist at all. A better comprehension of cultural and linguistic
changes that accompanied the cinematography evolution might have suggested that “moving
picture”, within few years from its first appearance, was shorten to become just “movie” (Figure
1). This error stems from the assumption that language is static and does not evolve. However,
this is not the case. Our language varies to reflect the shift in topics we talk about, which in turn
follow cultural changes (Michel et al. 2011).

So far, the automatic analysis of language was based on datasets that represented a snapshot
of a given domain or time period. However, since big data has arisen, making available large
corpora of data spanning several periods of time, culturomics has emerged as a new approach to
study linguistic and cultural trend over time by analysing these new sources of information.
The term culturomics was coined by the research group who worked on the Google Book
ngram corpus. The release of ngram frequencies spanning five centuries from 1500 to 2000 and
comprising over 500 billion words (Michel et al. 2011) opened new venues to the quantitative
analysis of changes in culture and linguistics. This study enabled the understanding of how some
phenomena impact on written text, like the rise and fallen of fame, censorship, or evolution in

∗ Department of Computer Science, University of Bari Aldo Moro, Via, E. Orabona, 4 - 70125 Bari (Italy).
E-mail: {pierpaolo.basile, annalina.caputo, giovanni.semeraro}@uniba.it.

© 2015 Associazione Italiana di Linguistica Computazionale



62

Italian Journal of Computational Linguistics Volume 1, Number 1

Figure 1
Trends from Google Books Ngram Viewer for words “movie” and “moving picture” over ten decades.

grammar and word senses. This paper focuses on senses, and proposes an algebraic framework
for the analysis of word meanings across different epochs.

The analysis of word-usage statistics over huge corpora has become a common technique
in many corpus-based linguistics tasks, which benefit from the growth rate of available digital
text and computational power. Better known as Distributional Semantic Models (DSM), such
methods are an easy way for building geometrical spaces of concepts, also known as Semantic
(or Word) Spaces, by skimming through huge corpora of text in order to learn the context of usage
of words. In the resulting space, semantic relatedness/similarity between two words is expressed
by the closeness between word-points. Thus, the semantic similarity can be computed as the
cosine of the angle between the two vectors that represent the words. DSM can be built using
different techniques. One common approach is the Latent Semantic Analysis (Landauer and
Dumais 1997), which is based on the Singular Value Decomposition of the word co-occurrence
matrix. However, many other methods that try to take into account the word order (Jones and
Mewhort 2007) or predications (Cohen et al. 2010) have been proposed. Recurrent Neural
Network (RNN) methodology (Mikolov et al. 2010) and its variant proposed in the word2vect
framework (Mikolov et al. 2013) based on the continuous bag-of-words and skip-gram model
take a new perspective by optimizing the objective function of a neural network. However, most
of these techniques build such SemanticSpaces taking a snapshot of the word co-occurrences
over the linguistic corpus. This makes the study of semantic changes during different periods of
time difficult to be dealt with.

In this paper we show how one of such DSM techniques, called Random Indexing (RI)
(Sahlgren 2005, 2006), can be easily extended to allow the analysis of semantic changes of
words over time (Jurgens and Stevens 2009). The ultimate aim is to provide a tool which enables
the understanding of how words change their meanings within a document corpus as a function
of time. We choose RI for two main reasons: 1) the method is incremental and requires few
computational resources while still retaining good performance; 2) the methodology for building
the space can be easily expanded to integrate temporal information. Indeed, the disadvantage of
classical DSM approaches is that WordSpaces built on different corpus are not comparable: it is
always possible to compare similarities in terms of neighbourhood words or to combine vectors
by geometrical operators, such as the tensor product, but these techniques do not allow a direct
comparison of vectors belonging to two different spaces. Our approach based on RI is able to
build a WordSpace for each different time periods and it makes all these spaces comparable to
each other, actually enabling the analysis of word meaning changes over time by simple vector
operations in WordSpaces.

The paper is structured as follows: Section 2 provides details about the adopted methodology
and the implementation of our framework. Some examples that show the potentialities of our
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framework are reported in Section 3, while Section 4 describes previous work on this topic.
Lastly, Section 5 closes the paper.

2. Methodology

We aim at taking into account temporal information in a DSM approach, which consists in
representing words as points in a WordSpace, where two words are similar if represented by
points close to each other. Under this light, RI has the advantages of being very simple, since it
is based on an incremental approach, and easily adaptable to the temporal analysis needs.

The WordSpace is built taking into account words co-occurrences, according to the distribu-
tional hypothesis (Harris 1968) which states that words sharing the same linguistic contexts are
related in meaning. In our case the linguistic context is defined as the words that co-occur in the
same period of time with the target (temporal) word, i.e. the word under the temporal analysis.
The idea behind RI has its origin in Kanerva work (Kanerva 1988) about Sparse Distributed
Memory. RI assigns a random vector to each context unit, in our case represented by a word.
The random vector is generated as a high-dimensional random vector with a high number of zero
elements and a few number of elements equal to 1 or −1 randomly distributed over the vector
dimensions. Vectors built using this approach generate a nearly orthogonal space. During the
incremental step, a vector is assigned to each temporal word as the sum of the random vectors
representing the context in which the temporal element is observed. In our case the target element
is a word, and contexts are the other co-occurring words that we observe analyzing a large corpus
of documents.

Finally, we compute the cosine similarity between the vector representations of word pairs
in order to compute their relatedness.

2.1 Random Indexing

The mathematical insight behind the RI is the projection of a high-dimensional space on a lower
dimensional one using a random matrix; this kind of projection does not compromise distance
metrics (Dasgupta and Gupta 1999).

Formally, given a n×m matrix A and an m× k matrix R, which contains random vectors,
we define a new n× k matrix B as follows:

An,m·Rm,k = Bn,k k << m (1)

The new matrix B has the property to preserve the distance between points, that is, if the
distance between any two points in A is d; then the distance dr between the corresponding
points in B will satisfy the property that dr ≈ c× d. A proof of that is reported in the Johnson-
Lindenstrauss lemma (Dasgupta and Gupta 1999).

Specifically, RI creates the WordSpace in two steps:

1. A random vector is assigned to each word. This vector is sparse, high-dimensional
and ternary, which means that its elements can take values in {-1, 0, 1}. A random
vector contains a small number of randomly distributed non-zero elements, and
the structure of this vector follows the hypothesis behind the concept of Random
Projection;

2. Context vectors are accumulated by analyzing co-occurring words. In particular
the semantic vector for any word is computed as the sum of the random vectors for
words that co-occur with the analyzed word.
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Figure 2
Random Projection.

Formally, given a corpus D of n documents, and a vocabulary V of m words extracted
form D, we perform two steps: 1) assign a random vector r to each word w in V ; 2) compute
a semantic vector svi for each word wi as the sum of all random vectors assigned to words co-
occurring with wi. The context is the set of c words that precede and follow wi. The second step
is defined by the following equation:

svi =
∑
d∈D

∑
−c<j<+c

j �=i

rj (2)

After these two steps, we obtain a set of semantic vectors assigned to each word in V
representing a WordSpace.

For example, considering the following sentence: “The quick brown fox jumps over the lazy
dog”. In the first step we assign a random vector1 to each term as follows:

rquick = (−1, 0, 0,−1, 0, 0, 0, 0, 0, 0)

rbrown = (0, 0, 0,−1, 0, 0, 0, 1, 0, 0)

rfox = (0, 0, 0, 0,−1, 0, 0, 0, 1, 0)

rjumps = (0, 1, 0, 0, 0,−1, 0, 0, 0, 0)

rover = (−1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

rlazy = (0, 0,−1, 1, 0, 0, 0, 0, 0, 0)

rdog = (0, 0, 0, 1, 0, 0, 0, 0, 1, 0)

In the second step we build a semantic vector for each term by accumulating random
vectors of its co-occurring words. For example, fixing c = 2 the semantic vector for the word
fox is the sum of the random vectors quick, brown, jumps, over. Summing these vectors, the
semantic vector for fox results in (0, 1, 0,−2, 0,−1, 0, 1, 0, 1). This operation is repeated for all

1 The vector dimension is set to 10, while the number of non-zero element is set to 2.
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the sentences in the corpus and for all the words in V . In this example, we used very small vectors,
but in a real scenario the vector dimension ranges from hundreds to thousands of dimensions.

2.2 Temporal Random Indexing

The classical RI does not take into account temporal information, but it can be easily adapted to
the methodology proposed in (Jurgens and Stevens 2009) for our purposes. Specifically, given a
document collection D annotated with metatada containing information about the year in which
the document was written, we can split the collection in different time periods D1, D2, . . . , Dp

we want to analyse. The first step in the classical RI is unchanged in Temporal RI: a random
vector is assigned to each word in the whole vocabulary V . This represents the strength of
our approach: the use of the same random vectors for all the spaces makes them comparable.
The second step is similar to the one proposed for RI but it takes into account the temporal
information: a different WordSpaces Tk is built for each time period Dk. Hence, the semantic
vector for a word in a given time period is the result of its co-occurrences with other words in the
same time interval, but the use of the same random vectors for building the word representations
over different times guarantees their comparability along the timeline. This means that a vector
in the WordSpace T1 can be compared with vectors in the space T2.

Let Tk be a period that ranges from year ykstart
to ykend

, where ykstart
< ykend

; then, to
build the WordSpace Tk we consider only the documents dk written during Tk as follows:

sviTk
=

∑
dk∈Dk

∑
−m<j<+m

j �=i

rj (3)

Using this approach we can build a WordSpace for each time period Tk over a corpus D tagged
with information about the publication year. The word wi has a separate semantic vector sviTk

for each time period Tk built by accumulating random vectors according to the co-occurring
words in that period.

For example, given the two sentences “The quick brown fox jumps over the lazy dog” and
“The Fox is an American commercial broadcast television” belonging to the different periods
of time Tk and Th, we obtain for the word fox the semantic vectors foxTk

and foxTh
. In the first

step, we build the random vectors for the words: american, commercial, broadcast, television; in
addition to those reported in Section 2.

ramerican = (1,−1, 0, 0, 0, 0, 0, 0, 0, 0)

rcommercial = (0, 0,−1, 0, 0, 0, 0, 0, 0, 1)

rbroadcast = (0, 0, 0, 0, 0, 0, 0, 1,−1, 0)

rtelevision = (0, 0, 0, 1, 0, 0, 0,−1, 0, 0)

The semantic vector for foxTk
is the same proposed in Section 2, while the semantic vector

for foxTh
is (1,−1,−1, 1, 0, 0, 0,−1, 1), which results from the sum of the random vectors of

words: american, commercial, broadcast, television.
The idea behind this method is to separately accumulate the same random vectors in each

time period. Then, the great potentiality of TRI lies on the use of the same random vectors to build
different WordSpaces: semantic vectors in different time periods remain comparable because they
are the linear combination of the same random vectors.
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Since in the previous example the semantic vectors foxTk
and foxTh

are computed as the sum
of different sets of random vectors their semantic similarity would result in a very low value. This
low similarity highlights a change in semantics of the word under observation. This is the key
idea behind our strategy to analyse change in word meanings over time. We adopt this strategy
to perform some linguistic analysis described in Section 3.

2.3 The TRI System

We develop a system, called TRI, able to perform Temporal RI using a corpus of documents with
temporal information. TRI provides a set of features to:

1. Build a WordSpace for each year, provided that a corpus of documents with
temporal information is available. In particular, given a set of documents with
publication year metadata, TRI extracts the co-occurrences and builds a
WordSpace for each year applying the methodology described in Section 2;

2. Merge WordSpaces that belong to a specific time period, the new WordSpace can
be saved on disk or stored in memory for further analysis. Using this feature is
possible to build a WordSpace that spans a given time interval;

3. Load a WordSpace and fetch vectors from it. Using this option is possible to load
in memory word vectors from different WordSpaces in order to perform further
operations on them;

4. Combine and sum vectors in order to perform semantic composition between
terms. For example, it is possible to compose the meaning of the two words
big+apple;

5. Retrieve similar vectors using the cosine similarity. Given an input vector, it is
possible to find the most similar vectors which belong to a WordSpace. Through
this functionality it is possible to analyse the neighbourhood of a given word;

6. Compare neighbourhoods in different spaces for the temporal analysis of a word
meaning.

All these features can be combined to perform linguistic analysis using a simple shell.
Section 3 describes some examples. The TRI system is developed in JAVA and is available on-
line2 under the GNU v.3 license.

3. Evaluation

The goal of this section is to show the usage of the proposed framework for analysing the changes
of word meanings over time. Moreover, such analysis supports the detection of linguistics events
that emerge in specific time intervals related to social or cultural phenomena.

To perform our analysis we need a corpus of documents tagged with time metadata. Then,
using our framework, we can build a WordSpace for each year. Given two time period intervals
and a word w, we can build two WordSpaces (Tk and Th) by summing the WordSpaces assigned
to the years that belong to each time period interval. Due to the fact that TRI makes WordSpaces
comparable, we can extract the vectors assigned to w in Tk and in Th, and compute the cosine

2 https://github.com/pippokill/tri
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similarity between them. The similarity shows how the semantics of w is changed over time;
a similarity equals to 1 means that the word w holds the same semantics. We adopt this last
approach to detect words that mostly changed their semantics over time and analyse if this change
is related to a particular social or cultural phenomenon. To perform this kind of analysis we need
to compute the divergence of semantics for each word in the vocabulary. Specifically, we can
analyse how the meaning of a word has changed in an interval spanning several periods of time.
We study the semantics related to a word by analysing its nearest words in the WordSpace. Then
using the cosine similarity, we can rank and select the nearest words of w in the two WordSpaces,
and measure how the semantics of w is changed. Moreover, it is possible to analyse changes in
the semantic relatedness between two words. Given two vector representations of terms, we
compute their cosine similarity time-by-time. Since the cosine similarity is a measure of the
semantic relatedness between the two term vectors, through this analysis we can detect changes
in meanings that involves two words.

3.1 Gutenberg Dataset

The first collection consists of Italian books with publication year by the Project Gutenberg3

made available in text format. The total number of collected books is 349 ranging from year
1810 to year 1922. All the books are processed using our tool TRI creating a WordSpace for
each available year in the dataset. For our analysis we created two macro temporal periods,
before 1900 (Tpre900) and after 1900 (Tpost900). The space Tpre900 contains information about
the period 1800-1899, while the space Tpost900 contains information about all the documents in
the corpus. As a first example, we analyse how the neighbourhood of the word patria (homeland)

Table 1
Neighbourhood of patria (homeland).

Tpre900 Tpost900

libertà libertà
opera gloria
pari giustizia

comune comune
gloria legge
nostra pari
causa virtù
italia onore

giustizia opera
guerra popolo

changes in Tpre900 and Tpost900. Table 1 shows the ten most similar words to patria in the two
time periods; differences between them are reported in bold. Some words (legge, virtù, onore)4

related to fascism propaganda occur in Tpost900, while in Tpre900 we can observe some concepts
(nostra, causa, italia)5 probably more related to independence movements in Italy.

As an example, analysing word meaning evolution over time, we observed that the word
cinematografo (cinema) clearly changes its semantics: the similarity of the word cinematrografo
in the two spaces is very low, about 0.40. To understand this change we analysed the neigh-
bourhood in the two spaces and we noticed that the word sonoro (sound) is strongly related

3 http://www.gutenberg.org/
4 In English: (law/order, virtue, honour).
5 In English: (our, reason, Italy).
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to cinematografo in Tpost900. This phenomenon can be ascribed to the sound introduction after
1900.
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Figure 3
Word-to-word similarity variation over time for Sonoro (sound) and Cinematografo (cinema) in the
Gutenberg dataset.

This behaviour is highlighted in Figure 3 in which we plot the cosine similarity between
cinematrografo and sonoro over the time. This similarity starts to increase in 1905, but only in
1914 we observe a substantial level of similarity between the two terms. We report in Figure 4 a
similar case between the words telefono (telephone) and chiamare (call, as verb). Their similarity
starts to increase in 1879, while a stronger level of similarity is obtained after 1895.

3.2 AAN Dataset

The ACL Anthology Network Dataset (Radev et al. 2013)6 contains 21,212 papers published by
the Association of Computational Linguistic network, with all metadata (authors, year of pub-
lication and venue). We split the dataset in decades (1960-1969, 1970-1979, 1980-1989, 1990-
1999, 2000-2009, 2010-2014), and for each decade we build a different WordSpace with TRI.
Each space is the sum of WordSpaces belonging to all the previous decades plus the one under
consideration. In this way we model the whole word history and not only the semantics related
to a specific time period. Similarly to the Gutenberg Dataset, we first analyse the neighbourhood
of a specific word, in this case semantics, and then we run an analysis to identify words that
have mostly changed during the time. Table 2 reports in bold, for each decade, the new words
that entered in the neighbourhood of semantics. The word distributional is strongly correlated to

6 Available on line: http://clair.eecs.umich.edu/aan/
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Figure 4
Word-to-word similarity variation over time for Telefono (telephone) and Chiamare (call) in the Gutenberg
dataset.

semantics in the decade 1960-1969, while it disappears in the following decades. Interestingly,
the word meaning popped up only in the decade 2000-2010, while syntax and syntactic have
always been present.

Table 2
Neighbourhoods of semantics across several decades.

1960-1969 1970-1979 1980-1989 1990-1999 2000-2010 2010-2014
linguistics natural syntax syntax syntax syntax

theory linguistic natural theory theory theory
semantic semantic general interpretation interpretation interpretation
syntactic theory theory general description description
natural syntax semantic linguistic meaning complex

linguistic language syntactic description linguistic meaning
distributional processing linguistic complex logical linguistic

process syntactic interpretation natural complex logical
computational description model representation representation structures

syntax analysis description logical structures representation

Regarding the word meaning variation over time, it is peculiar the case of the word bio-
science. Its similarity in two different time periods, before 1990 and the latest decade, is only
0.22. Analysing its neighbourhood, we can observe that before 1990 bioscience is related to
words such as extraterrestrial and extrasolar, nowadays the same word is related to medline,
bionlp, molecular and biomedi. Another interesting case is the word unsupervised, which was
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related to observe, partition, selective, performing, before 1990; while nowadays has correlation
with supervised, disambiguation, technique, probabilistic, algorithms, statistical. Finally, the
word logic has also changed its semantics after 1980. From 1979 to now, its difference in simi-
larity is quite low (about 0.60), while after 1980 the similarity increases and always overcomes
0.90. This phenomenon can be better understood if we look at the words reasoning and inference,
which have started to be related to the word logic only after 1980.
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Figure 5
Word-to-word similarity variation over time for Sentiment and Analysis in the AAN dataset.

Figures 5 and 6 show the variation in similarity values between pairs of words: an upsurge
in similarity reflects the increment of co-occurrences between the two words in similar contexts.
Figure 5 shows the plot of the cosine similarity between the words sentiment and analysis. We
note that in 2004 the similarity is very low (0.22), while only two years later, in 2006, the
similarity achieves the value 0.41. This pinpoints the growing interest of the linguistic community
about the topic sentiment analysis during those years. Analogously, we can plot the similarity
values for the words distributional and semantics. Analysing Figure 6 we can note that these two
words have started to show some correlations around the early 70s, followed by a drop of interest
until 1989; whereupon, although with a fluctuating trend, the interest in this topic has started to
increase more and more.

4. Related Work

The release of Google Book ngram in 2009 has sparked several research fields in the area of
computational linguistics, sociology, and diachronic systems. Up until that moment, “most big
data” were “big but short” (Aiden and Michel 2013), leaving little room for massive study of
cultural, social, and lexicographic changes during different epochs. Instead, the publication of
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Figure 6
Word-to-word similarity variation over time for Distributional and Semantics in the AAN dataset.

this huge corpus enabled many investigation of both social (Michel et al. 2011) and linguistic
trends (Mihalcea and Nastase 2012; Mitra et al. 2014; Popescu and Strapparava 2014).

Through the study of word frequencies across subsequent years, Michel et al. (Michel et
al. 2011) were able to study: grammar trends (low-frequency irregular verbs replaced by regular
forms), memory of past events, rise and fall in fame, censorship and repression, or historical
epidemiology. Moreover, the study of the past enabled prediction for the future. For example,
the burst of illness-related word frequencies was studied to predict outbreak in pandemic flu or
epidemic (Ritterman, Osborne, and Klein 2009; Culotta 2010).

Some work has tried to detect the main topics or peculiar word distributions of a given time
period in order to characterize an epoch. Popescu and Strapparava (Popescu and Strapparava
2014) explored different statistical tests to trace significant changes in word distributions. Then,
analysing emotion words associated to terms, they were able to associate an emotional blue-
print to each epoch. Moreover, they proposed a task (Popescu and Strapparava 2015) to analyse
epoch detection on the basis of (1) explicit reference to time anchors, (2) language usage, and (3)
expressions typical of a given time period.

Mihalcea and Nastase (Mihalcea and Nastase 2012) introduced the new task of word epoch
disambiguation. The authors queried Google Book with a predefined set of words in order to
collect snippets for each epoch considered in the experiment. Then, they extracted from the
snippets a set of local and topical features for the task of disambiguation. Results suggested that
words with highest improvement with respect to the baseline are good candidate for delimiting
epochs. Wijaya and Yeniterzi (Wijaya and Yeniterzi 2011) proposed a method to understand
changes in word semantics. They proposed a methodology that outdoes the simple observation
of word frequencies. They queried Google Books Ngram in order to analyse a predefined set of
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words, on which they performed two methods for detecting semantic changes. The first method
was based on Topics-Over-Time (TOT), a variation of Latent Dirichlet Allocation (LDA) that
captures changes in topic. The latter method consisted in retrieving ngrams for a given word
by treating all ngrams belonging to a year as a document. Then, they clustered the whole set: a
change in meaning occurs if two consecutive years (documents) belong to two different clusters.
LDA was also at the heart of the method proposed in (Anderson, McFarland, and Jurafsky 2012).
Authors analysed ACL papers from 1980-2008, LDA served to extract topics from the corpus that
were assigned to documents, and consequently to people that authored them. This enabled some
analysis, like the flow of authors between topics, and the main epochs in ACL history.

Most similar to the method proposed here are those works that avoid the frequentist analysis
of a predefined set of words, but rather build a semantic space of words that takes into account
also the temporal axis. In such a space, words are not just a number, but have a semantics defined
by the context of usage. Kim et al. (Kim et al. 2014) used a vector representation of words by
training a Neural Language Model, one for each year from 1850-2009. The comparison between
vectors of the same word across different time periods indicates when the word changed its
meaning. Such a comparison was performed through cosine similarity. Jatowt and Duh (Jatowt
and Duh 2014) exploited three different distributional spaces based on normal co-occurrences,
positional information, and Latent Semantic Analysis. The authors built a space for each decade,
in order to compare word vectors and detect when a difference between the word contexts has
occurred. Moreover, they analysed the sentiment expressed in the context associated to the word
over time. Mitra et al. (Mitra et al. 2014) built a distributional thesaurus (DT) for each period of
time they wanted to analyse. Then, they applied a co-occurrence graph based clustering algorithm
in order to cluster words according to senses in different time periods: the difference between
clusters is exploited to detect changes in senses. All these works have in common the fact that
they build a different semantic space for each period taken into consideration; this approach
does not guarantee that each dimension bears the same semantics in different spaces (Jurgens
and Stevens 2009), especially when reduction techniques are employed. In order to overcome
this limitation, Jurgens and Stevens (Jurgens and Stevens 2009) introduced Temporal Random
Indexing technique as a means to discover semantic changes associated to different events in
a blog stream. Our methodology relies on the technique introduced by (Jurgens and Stevens
2009) but with a different aim. While Jurgens and Stevens exploit TRI for the specific task of
event detection, in this paper we built a framework on TRI for the general purpose of analysing
linguistic phenomena, like changes in semantics between pairs of words and neighbourhood
analysis over time.

5. Conclusions

The analysis of cultural, social, and linguistic phenomena from a temporal perspective has gained
a lot of attention during the last decade due to the availability of large corpora containing
temporal information. In this paper, we proposed a method for building WordSpaces taking into
account information about time. In a WordSpace, words are represented as mathematical points
whose proximity reflects the degree of semantic relatedness between the terms involved. The
proposed system, called TRI, is able to build several WordSpaces, which represent words in
different time periods, and to compare vectors belonging to different spaces to understand how
the meaning of a word has changed over time.

We reported some examples of the temporal analysis that can be carried out by our frame-
work on an Italian dataset about books and an English dataset of scientific papers on compu-
tational linguistics. Our investigation shows the ability of our system to (1) capture changes in
word usage over time, and (2) analyse changes in the semantic relationship between two words.
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This analysis is useful to detect linguistic events that emerge in specific time intervals and that
can be related to social or cultural phenomena.

As future work we plan a thoroughly temporal analysis on a bigger corpus like Google ngram
and an extensive evaluation on a temporal task, like SemEval-2015 Diachronic Text Evaluation
Task (Popescu and Strapparava 2015).
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Recent works on Sentiment Analysis over Twitter are tied to the idea that the sentiment can
be completely captured after reading an incoming tweet. However, tweets are filtered through
streams of posts, so that a wider context, e.g. a topic, is always available. In this work, the
contribution of this contextual information is investigated for the detection of the polarity of
tweet messages. We modeled the polarity detection problem as a sequential classification task over
streams of tweets. A Markovian formulation of the Support Vector Machine discriminative model
has been here adopted to assign the sentiment polarity to entire sequences. The experimental
evaluation proves that sequential tagging better embodies evidence about the contexts and is
able to increase the accuracy of the resulting polarity detection process. These evidences are
strengthened as experiments are successfully carried out over two different languages: Italian
and English. Results are particularly interesting as the approach is flexible and does not rely on
any manually coded resources.

1. Introduction

In the Web 2.0 era, people write about their life and personal experiences, sharing
contents about facts and ideas. Social Networks became the main place where sharing
this information and now represent also a valuable source of evidences for the analysts.
This data is crucial in the study of interactions and dynamics of subjectivity on the Web.
Twitter1 is one among these microblogging services that counts more than a billion of
active users and more than 500 million of daily messages2. However, the analysis of this
information is still challenging: Twitter messages are characterized by a very informal
language, affected by misspelling, slang and special tokens as #hashtags, i.e. special user-
generated tags used to contextualize a tweet around specific topics.

Researches focused on the computational study and automatic recognition of opin-
ions and sentiments as they are expressed in free texts. It gave rise to the field of
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Sentiment Analysis (SA), a set of tasks aiming at recognizing and characterizing the
subjective attitude of a writer with respect to some topics. Many SA studies map senti-
ment detection in a Machine Learning (ML) setting (Pang and Lee 2008), where labeled
data allow to induce a sentiment detection function. In general, sentiment detection in
tweets has been generally treated as any other text classification task, as proved by most
papers participating to the Sentiment Analysis in Twitter task in SemEval-2013, SemEval-
2014 and Evalita-2014 challenges (Nakov et al. 2013; Rosenthal et al. 2014; Basile et al.
2014), where specific representations for a message are derived considering one tweet
in isolation. The shortness of messages and the inherent semantic ambiguity are critical
limitations and make these systems fail in many cases.

Let us consider the message, in which a tweet from ColMustard cites SergGray:

ColMustard : @SergGray Yes, I totally agree with you about the substitutions! #Bayern #Freiburg

The tweet sounds like to be a reply to the previous one. Notice how no lexical nor
syntactic property allows to determine the sentiment polarity. However, if we look at
the entire conversation preceding this message:

ColMustard : Amazing match yesterday!!#Bayern vs. #Freiburg 4-0 #easyvictory

SergGray : @ColMustard Surely, but #Freiburg wasted lot of chances to score.. wrong substitutions

by #Guardiola during the 2nd half!!

ColMustard : @SergGray Yes, I totally agree with you about the substitutions! #Bayern #Freiburg

it is easy to establish that a first positive tweet has been produced, followed by a second
negative one so that the third tweet is negative as well. Only by considering its context,
i.e. the conversation, we are able to understand even such a short message and properly
characterize it according to its author and posting time.

We aim at exploiting such a richer set of observations (i.e. conversations or, in
general, contexts) and at defining a context-aware SA model along two lines: first,
by enriching a tweet representation to include the conversation information, and then
by introducing a more complex classification model that works over an entire tweet
sequence and not only on a tweet (i.e. the target) in isolation. Accordingly, in the paper
we will first focus on different representations of tweets that can be made available to a
sentiment detection process. They will also account for contextual information, derived
both from conversations, as chains of tweets that are reply-to the previous ones, and
topics, built around hashtags. These are in fact topics explicitly annotated by users, such
as events (#easyvictory) or people (#Guardiola). A hashtag represents a wider notion of
conversation that enforces the sense of belonging to a community. From a computational
perspective, the polarity detection of a tweet in a context is here modeled as a sequential
classification task. In fact, both conversation and topic-based contexts are arbitrarily
long sequences of messages, ordered according to time with the target tweet being the
last. A variant of the SVMhmm learning algorithm (Altun, Tsochantaridis, and Hofmann
2003) has been implemented in the KeLP framework (Filice et al. 2015) to classify an
instance (here, a tweet) within an entire sequence. While SVM based classifiers allow
to recognize the sentiments from one specific tweet at a time, the adopted sequence
classifier jointly labels all tweets in a sequence. It is expected to capture patterns within
a conversation and apply them in novel sequences through a standard decoding task.

While all the above contexts extend a tweet representation, they are still local to a
specific notion of conversation. In this work, we also explore a more abstract notion of
contexts, e.g. the history of messages from the same user, that embodies the emotional
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attitude shown by each user in his overall usage of Twitter. In the above example,
ColMustard exhibits a specific attitude while discussing about the Bayern Munchen.
We can imagine that this feature characterizes most of its future messages at least about
football. We suggest to enrich the tweet representation with features that synthesize a
user’s profile, in order to catch possible biases towards a particular sentiment polarity.
This is quite interesting as it has been shown that communities behave in a coherent
way and users tend to take stable standing points.

This work is an extension of (Vanzo, Croce, and Basili 2014) and (Vanzo et al. 2014).
Here, the evaluation in the Italian setting is provided over a subset of the Evalita 2014
Sentipolc dataset (Basile et al. 2014). Moreover, we here provide a deeper evaluation
of the contribution of different kernel functions as well as more insights about the
phenomena covered by the contextual models.

In the remaining of the paper, a survey of the existing approaches is presented into
Section 2. Then, Section 3 provides a description of context-based models: conversation,
topic-based and user profiling. The experimental evaluation is presented in Section 4
and it proves the positive impact of social dynamics on the SA task.

2. Related Works

Sentiment Analysis (SA) has been described as a Natural Language Processing task at
many levels of granularity. It has been mapped to document level, (Turney 2002; Pang
and Lee 2004), sentence level (Hu and Liu 2004; Kim and Hovy 2004) and at the phrase
level (Wilson, Wiebe, and Hoffmann 2005; Agarwal, Biadsy, and Mckeown 2009).

The spreading of microblog services, e.g. Twitter, where users post real-time opin-
ions about “everything”, poses newer and different challenges. Classical approaches to
SA (Pang, Lee, and Vaithyanathan 2002; Pang and Lee 2008) are not directly applicable:
tweets are very short and a fine-grained lexical analysis is required. Recent works tried
to model the sentiment in tweets by taking into account these characteristics of the data
(Go, Bhayani, and Huang 2009; Pak and Paroubek 2010; Davidov, Tsur, and Rappoport
2010; Bifet and Frank 2010; Barbosa and Feng 2010; Kouloumpis, Wilson, and Moore
2011; Zanzotto, Pennaccchiotti, and Tsioutsiouliklis 2011; Agarwal et al. 2011; Croce and
Basili 2012; Si et al. 2013; Kiritchenko, Zhu, and Mohammad 2014). Specific approaches
and feature modeling are used to improve accuracy levels in tweet polarity recognition.
For example, the use of n-grams, POS tags, polarity lexicons (Kiritchenko, Zhu, and
Mohammad 2014; Castellucci, Croce, and Basili 2015) and tweet specific features (e.g.
hashtags, re-tweets) are some of the main properties exploited by these works, in com-
bination with different machine learning algorithms: among these latter, probabilistic
paradigms, e.g. Naive Bayes (Pak and Paroubek 2010), or Kernel-based machines, as
discussed in (Barbosa and Feng 2010; Agarwal et al. 2011; Castellucci et al. 2014), are
mostly adopted. An interesting perspective, where a kind of contextual information is
studied, is presented in (Mukherjee and Bhattacharyya 2012): the sentiment detection
of tweets is here modeled according to lexical features as well as discourse relations
like the presence of connectives, conditionals and semantic operators like modals and
negations. In (Speriosu et al. 2011) and (Tan et al. 2011), social information between
users is exploited. (Speriosu et al. 2011) builds a graph of Twitter messages that are
linked to words, emoticons and users. Users are connected if they are in a following
relationship. A Label Propagation (Talukdar and Crammer 2009) framework is adopted
to spread polarity label distributions and to classify messages with respect to polarity.
The relationships between users constitute a sort of contextual information. Again,
in (Tan et al. 2011), user relationships are exploited for the polarity classification of
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messages in a transductive learning setting. The main motivation in (Tan et al. 2011) is
that “users that are somehow connected may be more likely to hold similar opinions”.

Nevertheless, in almost all the above approaches, features are derived only from
lexical resources or from the tweet or users, and no contextual information, in terms
of other related messages, is really exploited. However, given one tweet targeted, more
awareness about its content and, thus, its sentiment, can be achieved by considering
the entire stream of related posts immediately preceding it. In order to exploit this
wider information, a Markovian extension of a Kernel-based categorization approach
is presented in the next section.

3. A Context-aware Model for Sentiment Analysis in Twitter

As discussed in the introduction, contextual information about one tweet stems from
various aspects: an explicit conversation, the overall set of recent tweets about a topic
(for example a hastag like #Bayern), or the user attitude. The heterogeneity of this
information requires the integration of different aspects that are heterogeneous. As
individual perspectives on the context are independent, i.e. a conversation may or
may not depend on user preference or cheer, and they also obey to different notion
of analogies or similarity, we should avoid a unified representation for them. We are
more likely to derive independent representations and make them interact in a proper
algorithmic framework. We thus consider a tweet as a multifaceted entity where a set
of vector representations, each one contributing to one aspect of the overall representa-
tion, exhibits a specific similarity metrics. This is exactly what Kernel-based learning
supports, whereas the combination of different kernels can easily result in a kernel
function itself (Shawe-Taylor and Cristianini 2004). Kernels are thus used to capture
specific aspects of the semantic relatedness between two messages and are integrated in
various machine learning algorithms, such as Support Vector Machines (SVMs).

3.1 Representing Tweets through Different Kernel Functions

Many ML approaches for Sentiment Analysis in Twitter benefits by complex modeling
of individual tweets, as discussed in many works (Nakov et al. 2013). The representation
we propose makes use of individual kernels as models of different aspects that are made
available to a SVM algorithm. In the remaining of this Section, different kernel functions
are presented for capturing different semantic and sentiment aspects of the data.
Bag of Word Kernel (BoWK). The simplest kernel function describes the lexical overlap
between tweets, thus represented as vectors, i.e. Bag-Of-Words vectors, whose individ-
ual dimensions correspond to the different words. Components denote the presence or
not of a word in the text and the kernel function corresponds to the cosine similarity be-
tween vector pairs. Even if very simple, the BoWK model is one of the most informative
representation in SA, as emphasized since (Pang, Lee, and Vaithyanathan 2002).
Lexical Semantic Kernel (LSK). Lexical information in tweets can be very sparse.
In order to extend the BoWK model, we provide a further representation aiming at
generalizing the lexical information. It can be obtained for every term of a dictionary by
a Word Space (WS) built according to a Distributional Model (Sahlgren 2006) of lexical
semantics. These models have been successfully applied in several NLP tasks, such as
Frame Induction (Pennacchiotti et al. 2008) or Semantic Role Labeling (Croce et al. 2010).
In this work, we derive a vector representation �wi for each word wi in the vocabulary by
exploiting Neural Word Embeddings (Bengio et al. 2003; Mikolov et al. 2013). The result
is that every word can be projected in the WS and a vector, i.e. WS vector, for each tweet
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is derived through the linear combination of the occurring word vectors (also called
additive linear combination in (Mitchell and Lapata 2010)). The resulting kernel function
is the cosine similarity between tweet vector pairs, in line with (Cristianini, Shawe-Taylor,
and Lodhi 2002). Notice that the adoption of a distributional approach does not limit the
overall application, as it can be automatically applied without relying on any manually
coded resource.
User Sentiment Profile Kernel (USPK). A source of evidence about a tweet is its
author, with his attitude towards some polarities. In general, a person will show similar
attitudes with respect to the same topics. Thus, we can think of specific features that
should model the users’ attitudes given its messages. Let ti ∈ T be a tweet and i ∈ N+

its identifier. The User Profile Context can be defined as the set of the last tweets posted
by the author ui of ti: we denote this set of messages as Λui . This information is a
body of evidence about the opinion holder, and can be adopted to build a profile on
which a further tweet representation can be defined. A tweet ti is here mapped into a
three dimensional vector, i.e. USP vector, �µi =

(
µ1
i , µ

2
i , µ

3
i

)
, where each component µj

i

is the indicator of a polarity trend, i.e. positive, negative and neutral, expressed through
the conditional probability P (j | ui) for the polarity labels j ∈ Y given the user ui. We
can suppose that, for each tk ∈ Λui , its corresponding label yk is available either as a
gold standard annotation or predicted in a semi-supervised fashion. The estimation of
µj
i ≈ P (j | ui), is a σ-parameterized Laplace smoothed version of the observations in Λui :

µj
i =

|Λui |∑
k=1

1{yk=j}(tk) + σ

|Λui |+ σ|Y|
(1)

where σ ∈ R is the smoothing parameter, j ∈ Y , i.e. the set of polarity labels. A kernel
function, in which we are interested in, should capture when two users ui, uj , ui �= uj

expresses similar sentiment attitudes in their messages. We call this kernel function
User Sentiment Profile Kernel (USPK), and it can be computed as the cosine similarity
between the two vectors (�µi, �µm). As an example, let us consider a user u1 whose
timeline is composed by 100 messages, whose distribution with respect to the positive,
negative and neutral classes is the following: 43 positive, 21 negative and 36 neural. If
we adopt the Equation 1 with σ = 1.0, we obtain three values: µpositive

1 = 43+1
100+3 = 0.43,

µnegative
1 = 21+1

100+3 = 0.22, µneutral
1 = 36+1

100+3 = 0.35. These values can be arranged into a
3-dimensional USP vector, �µ1 = [0.43, 0.22, 0.35] whose aim is to capture that u1 writes
with a-priori positive attitude. If another user, e.g. u2, wrote 325 messages distributed
as 145 positive, 65 negative and 115 neutral, it is easy to compute a USP vector �µ2 =
[0.45, 0.20, 0.35]. Then, the kernel operating on �µ1, �µ2 will capture that u1 and u2 write
their messages with similar attitudes, and that they should be treated similarly.
The multiple kernel approach. Whenever the different kernels are available, we can
apply a linear combination αBoWK+βLSK or αBoWK+βLSK+γUSPK in order to ex-
ploit lexical and semantic properties captured by BoWK and LSK, or user properties as
captured by USPK. The combination is still a valid kernel, and can thus be adopted in a
kernel-based learning framework.

3.2 Modeling Tweet Contexts in a Sequential Labeling Framework

The User Sentiment Profile Kernel (USPK) can be seen as an implicit representation of
the context describing the writer. However, contextual information is usually embodied
by the stream of messages in which a target tweet ti is immersed. Usually, the stream
is completely available to a reader. In all cases, the stream gives rise to a sequence on
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which a sequence labeling algorithm can be applied: the target tweet is here always
labeled within the entire sequence, where contextual constraints are provided by the
preceding tweets. In this work we rely on two different types of context: Conversational
context and Topical context. The former is based on the reply-to chain. In this case, the
entire sequence is built by leveraging the reply information available for Twitter statuses,
that basically represents a pointer to the previous tweet within the conversation chain.
The latter takes into account hashtags that allow to aggregate different tweets around
a specific topic specified by the users. Here, a tweet sequence can be derived including
the n messages preceding the target ti that contain the same hashtag set. This is usually
the output of a search in Twitter and it is likely the source information that influenced
the writer’s opinion. A more formal definition of the above contexts is given below.

Definition 1 (Conversational context)
For every tweet ti ∈ T , let r(ti) : T → T be a function that returns either the tweet to
which ti is a reply to, or null if ti is not a reply. Then, the conversation-based context ΛC,l

i

of tweet ti (i.e., the target tweet) is the sequence of tweet iteratively built by applying
r(·), until l tweets have been selected or r(·) = null. In other words, l allows to limit the
size of the input context.

An example of conversation-based context is given in Section 1.

Definition 2 (Topical context)
Let ti ∈ T be a tweet and h(i) : T → P(H) be a function that returns the entire hashtag
set Hi ⊆ H observed into ti. Then, the hashtag-based context ΛH,l

i for a tweet ti (i.e., target
tweet) is a sequence of the most recent l tweets tj such that Hj ∩Hi �= ∅, i.e. tj and ti
share at least one hashtag, and tj has been posted before ti.

As an example, the following hashtag context has been obtained about #Bayern:

MrGreen : Fun fact: #Freiburg is the only #Bundesliga team #Pep has never beaten in his

coaching career. #Bayern

MrsPeacock : Young starlet Xherdan #Shaqiri fires #Bayern into a 2-0 lead. Is there any hope

for #Freiburg?

pic.twitter.com/krzbFJFJyN

ProfPlum : It is clear that #Bayern is on a rampage leading by 4-0, the latest by Mandzukic...

hoping for another 2 goals from #bayernmunich

MissScarlet : Noooo! I cant believe what #Bayern did!

MissScarlet expresses an opinion, but the corresponding polarity is easily evident
only when the entire stream is available about the #Bayern hashtag. As well as in a
conversational context, a specific context size n can be imposed by focusing only on the
last n tweets of the sequence. Once different representations and contexts are available
a structured learning-based approach can be applied to Sentiment Analysis. Firstly, we
will discuss a discriminative multiclass learning approach adopted to classify tweets
without considering the contextual information. Then a sequence labeling approach,
inspired by the SVMhmm learning algorithm (Altun, Tsochantaridis, and Hofmann
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2003), will be introduced. It will be adopted to label sequence of messages coming both
from conversation and hashtag contexts.

3.3 Context-unaware vs. Context-aware Classification

The multiclass approach for a context-unaware classification. A multi-classification
schema is applied to detect the polarity of messages. We adopt Support Vector Machines
(Vapnik 1998) within a One-Vs-All schema (Rifkin and Klautau 2004). In particular,
given a training set D of tweet messages distributed across n classes, n binary classi-
fication functions fp, where n is the number of classes, are acquired through the kernel
functions above defined. These binary classifiers are used to decide the polarity of a
message ti, by choosing the class that maximizes the confidence of the classifier, i.e.
argmaxp∈{pos,neg,neu} fp(ti). This learning model is applied to tweet messages without
considering the contexts in which they are immersed.
A sequential labeling approach for a context-aware classification. The sentiment pre-
diction of a target tweet can be seen as a sequential classification task over a context.
To this respect, we adopted an algorithm inspired by the SVMhmm algorithm (Altun,
Tsochantaridis, and Hofmann 2003).

Given an input sequence x = (x1 . . . xm) ⊆ X , where x is a tweet sequence, e.g. con-
sidering a conversation or hashtag context, and xi ∈ Rn is a feature vector representing a
tweet, the model predicts a tag sequence y = (y1 . . . ym) ∈ Y+ (with y ∈ Σ and ‖Σ‖ = l)
after learning a linear discriminant function. The aim of a Markovian formulation of
SVM is to make dependent the classification of a tweet xi from the label assigned to
the previous elements in a history of length k, i.e xi−k, . . . , xi−1. Given this history, a
sequence of k labels can be retrieved, in the form yi−k, . . . , yi−1. In order to make the
classification of xi dependent also from the history, we augment the feature vector of xi

introducing a vector of transitions ψtr(yi−k, . . . , yi−1) ∈ Rl: it is a boolean vector where
the dimensions corresponding to the k labels preceding the target element xi are set to
1. A projection function φ(xi) is defined to consider both the observations, i.e. ψobs and
the transitions ψtr in a history of size k by concatenating the two representation, i.e.:

xk
i = φ(xi; yi−k, . . . , yi−1) = ψobs(xi) || ψtr(yi−k, . . . , yi−1)

with xk
i ∈ Rn+l and ψobs(xi) leaves intact the original feature space. Notice that the

vector concatenation is here denoted by the symbol || , and that the feature space
operated by ψobs is the one defined by the kernel linear combination as described in
Section 3.1. In fact, adopting linear kernels the space defined by the linear combination is
equivalent to the space obtained by juxtaposing the vectors on which each kernel oper-
ates. More formally, assuming that K is a linear kernel, i.e. the inner product, and xi, xj

are two instances whose vector representations are xia , xib , xja , xjb , e.g. xia , xja are Bag-
Of-Words vectors and xib , xjb are WS vectors, K(xi, xj) = K(xia , xja) +K(xib , xjb) =
〈xia ||xib , xja ||xjb〉. In this case3, thus, ψobs(xi) = xia ||xib .

At training time, we use the SVM learning algorithm implemented in LibLinear
(Fan et al. 2008) in a One-Vs-All schema over the feature space derived by φ, so that for
each yj a linear classifier fj(xk

i ) = wjφ(xi; yi−k, . . . , yi−1) + bj is learned. The φ function
is computed for each element xi by exploiting the gold label sequences. At classification

3 Before concatenating, each vector composing the observation of an instance, i.e. ψobs(xi), is normalized
to have unitary norm, so that each representation equally contributes to the overall kernel estimation.
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time, all possible sequences y ∈ Y+ should be considered in order to determine the best
labeling ŷ = F (x, k), where k is the size of the history used to enrich xi, that is:

ŷ = F (x, k) = argmax
y∈Y+

{
∑

i=1...m

fj(x
k
i )} = argmax

y∈Y+

{
∑

i=1...m

wjφ(xi; yi−k, . . . , yi−1) + bj}

In order to reduce the computational cost, a Viterbi-like decoding algorithm is adopted4

to derive the sequence, and thus build the augmented feature vectors through the φ
function. In our setting, the markovian perspective allows to induce patterns across
tweet sequences helpful to recognize sentiment even for truly ambiguous tweets.

4. Experimental Evaluation

The aim of the following evaluation is to estimate the contribution of the contextual
models to the accuracy reachable in different scenarios, whereas rich contexts (e.g.
popular hashtags) are possibly made available or when tweets with no context are
targeted. Moreover, in order to prove the portability of the proposed approach, we
experimented it on two different languages: English and Italian. In the first case, we
adopted the Sentiment Analysis in Twitter dataset5 as it has been made available in the
ACL SemEval-2013 (Nakov et al. 2013). Experiments for SA in Italian are carried out over
the Evalita 2014 Sentipolc dataset (Basile et al. 2014).

Our experiments only require the availability of both conversation and hashtag
contexts and these are gathered for both datasets by adopting the Twitter API, given
the IDs of the target tweet in the datasets6. In the case of the Semeval2013 dataset,
only tweets from the training and development datasets are characterized by IDs: we,
thus, statically divided the training and development official datasets in 80/10/10,
respectively for Training/Held-out/Test. As the performance evaluation is always carried
out against one target tweet, the multi-classification may be applied when no context
is available (i.e. there is no conversation nor hashtag to build the context) or when
a rich conversational or topical context is available. Table 1 summarizes the number
of tweets available for the Semeval-2013 dataset. The entire corpus of 10,045 messages
is shown in column 1, while columns 2-4 represent the subsets of target tweets for
which conversational contexts, topical contexts or both were available, respectively.
Conversational contexts are available only for 1,391 tweets (column 2), while topical
contexts include 1,912 instances (column 3). Both contexts are available only for 128
tweets.

The Italian Evalita dataset consists of short messages annotated with the
subjectivity, polarity and irony classes. We selected those messages annotated
with polarity and that were not expressing any ironic content7. Again, we were able
to gather the contexts only for a subset of this dataset due to cancelation or privacy
restrictions. The final data used for our evaluations consists of a training set of 2, 445
messages and a testing set of 1, 128 messages. Table 2 summarizes the number of

4 When applying fj(x
k
i ) the classification scores are normalized through a softmax function and

probability scores are derived.
5 http://www.cs.york.ac.uk/semeval-2013/task2/index.php?id=data
6 We were able to download only a (still consistent) subset of the messages, as some of them have been

deleted or the author changed its privacy settings.
7 We removed the ironic tweets to have similar datasets in English and Italian. In fact, ironic messages

would have biased the final evaluations in Italian, making more difficult to interpret the results.
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Table 1
Number of annotated messages within the Semeval 2013 Dataset. In parentheses the percentage
of messages with respect to the size of the dataset.

Dataset (size) w/ conv w/ hashtag w/ both
Training (8045) 1106 (13.74%) 1554 (19.31%) 100 (1.24%)
Development (1001) 150 (14.98%) 190 (18.98%) 12 (1.20%)
Testing (999) 135 (13.51%) 168 (16.81%) 16 (1.60%)

messages in this dataset, where the subsets of messages characterized by the considered
contexts are again emphasized. In both languages, experiments are intended to classify
the polarity of a message with respect to the three classes positive, negative and neutral.

Table 2
Number of annotated messages within the Evalita 2014 Sentipolc Dataset. In parentheses the
percentage of messages with respect to the size of the dataset.

Dataset (size) w/ conv w/ hashtag w/ both
Training (2445) 349 (14,27%) 987 (40.36%) 80 (3.27%)
Testing (1128) 169 (14.98%) 468 (41.48%) 47 (4.16%)

As tweets are noisy texts, a pre-processing phase has been applied to improve the
quality of linguistic features observable and reduce data sparseness. In particular, a
normalization step is applied to each post: fully capitalized words are converted in
lowercase; reply marks are replaced with the pseudo-token USER, hyperlinks by LINK,
hashtags by HASHTAG and emoticons by special tokens8. Afterwards, an almost standard
multi-language NLP chain is applied through the Chaos parser (Basili, Pazienza, and
Zanzotto 1998). In particular, each tweet, with its pseudo-tokens produced by the nor-
malization step, is mapped into a sequence of POS tagged lemmas. In order to feed the
LSK, lexical vectors correspond to a Word Space (WS) derived from a corpus of about
20 million and 10 million of tweets, respectively for English and Italian. Also these mes-
sages have been analyzed by applying the same normalization above, and 〈lemma,pos〉
pairs are fed in input to the word2vec9 tool. Skip-gram models10 are acquired from
these datasets, resulting in two 250 dimensional vector spaces that are adopted in
computing LSK. No existing dataset contains gold standard annotations for tweets
belonging to contexts: USPK or the markovian approach would not be applicable. The
solution we propose is to create a semi-supervised Gold-Standard by acquiring a multi-
classifier. In particular, we derive a multi-classifier with the methodology described
in Section 3.2 on the available labeled training data with a BoWK+LSK function. We
then classify each tweet in contexts with this classifier. This is a noisy but realistic and
portable solution across datasets to initialize tweets labels.

Performance scores report the classification accuracy in terms of Precision, Recall
and standard F-measure. However, in line with SemEval-2013, we report the F1Pn
score as the arithmetic mean between the F1 of positive, negative classes, and the F1Pnn
score as the mean between of all the involved polarity classes. The multi-class classifiers

8 We normalized 113 well-known emoticons in 15 classes.
9 https://code.google.com/p/word2vec/

10 word2vec settings are: min-count=50, window=5, iter=10 and negative=10.
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have been acquired with the SVM implementation that can be found in the KeLP (Filice
et al. 2015) framework11. Also the Markovian sequential labeler has been implemented
within KeLP. In the following experiments we adopted different kernel combinations
to test the contribution of each kernel. When a kernel is the result of the combination
of two or more kernels, the corresponding weights are set to 1 to equally consider their
contribution. For example, when adopting the BoWK and the USPK their combination
is given by α BoWK + β USPK where α = β = 1.

Table 3
Results over the Semeval 2013 Twitter Sentiment Analysis Dataset.

Ctx. Positive Negative Neutral F1Pn F1Pnn
size P R F1 P R F1 P R F1

BoWK
multi - .746 .661 .701 .478 .620 .540 .733 .736 .735 .621 .659

conv

3 .774 .656 .710 .550 .465 .504 .701 .821 .756 .607 .657
6 .755 .693 .722 .618 .444 .516 .707 .815 .757 .619 .665

16 .751 .680 .714 .604 .472 .530 .703 .804 .750 .622 .664
31 .765 .680 .720 .595 .486 .535 .705 .809 .753 .627 .669

hash

3 .769 .654 .707 .567 .479 .519 .705 .826 .761 .613 .662
6 .746 .651 .695 .565 .521 .542 .708 .798 .750 .619 .662

16 .742 .677 .708 .567 .535 .551 .723 .787 .754 .629 .671
31 .763 .690 .725 .578 .549 .563 .730 .798 .762 .644 .683

BoWK+LSK
multi - .765 .690 .726 .500 .648 .564 .760 .753 .756 .645 .682

conv

3 .773 .703 .736 .603 .535 .567 .731 .811 .769 .652 .691
6 .770 .708 .738 .584 .514 .547 .732 .806 .767 .642 .684

16 .780 .705 .741 .591 .528 .558 .730 .811 .768 .649 .689
31 .772 .716 .743 .603 .535 .567 .732 .800 .764 .655 .691

hash

3 .770 .708 .738 .563 .500 .530 .741 .815 .776 .634 .681
6 .757 .693 .723 .579 .514 .545 .730 .806 .766 .634 .678

16 .756 .705 .730 .578 .549 .563 .736 .787 .761 .647 .685
31 .770 .682 .723 .577 .577 .577 .732 .800 .764 .650 .688

BoWK+USPK
multi - .769 .669 .715 .481 .634 .547 .747 .755 .751 .631 .671

conv

3 .735 .680 .706 .569 .289 .383 .687 .832 .753 .545 .614
6 .751 .661 .703 .551 .415 .474 .699 .819 .754 .589 .644

16 .738 .654 .693 .523 .401 .454 .697 .811 .749 .574 .632
31 .737 .674 .704 .555 .465 .506 .703 .787 .743 .605 .651

hash

3 .762 .672 .714 .590 .486 .533 .713 .821 .764 .624 .670
6 .771 .669 .716 .580 .535 .557 .724 .819 .768 .637 .681

16 .756 .680 .716 .569 .521 .544 .720 .798 .757 .630 .672
31 .776 .682 .726 .578 .549 .563 .731 .815 .771 .645 .687

BoWK+LSK+USPK
multi - .779 .685 .729 .511 .634 .566 .758 .779 .768 .648 .688

conv

3 .764 .703 .732 .619 .514 .562 .733 .819 .774 .647 .689
6 .764 .703 .732 .612 .521 .563 .738 .819 .776 .647 .690

16 .770 .685 .725 .623 .535 .576 .726 .823 .772 .650 .691
31 .776 .690 .731 .582 .549 .565 .735 .815 .773 .648 .690

hash

3 .772 .690 .729 .588 .542 .564 .734 .815 .772 .646 .688
6 .759 .693 .724 .591 .528 .558 .726 .802 .762 .641 .681

16 .755 .693 .722 .581 .556 .568 .732 .791 .761 .645 .684
31 .753 .700 .726 .596 .570 .583 .736 .787 .761 .654 .690

11 http://sag.art.uniroma2.it/demo-software/kelp/
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4.1 Context-aware Classification of Twitter Messages

The experiments have been run to validate the impact of contextual information over
generic tweets, independently from the availability of a context. In this case, the en-
tire dataset is used. The different settings adopted are reported in independent rows,
corresponding to different classification approaches:

� multi refers to the application of the multi-classification of SVM with the
One-Vs-All approach, that does not require any context and can be
considered as a baseline for the employed kernel combination;� conv refers to the sequential labeler observing the conversation-based
contexts. The training and testing of the classifier is here run with different
context sizes, by parameterizing l in ΛC,l

i ;� likewise, hash refers to the sequential labeler observing the topic-based
contexts, when hashtags are considered. Different context sizes have been
considered, by parameterizing l in ΛH,l

i .

When no context is available, both conv and hash models act on a sequence of length
one, and no transition is applied.

Table 3 shows the empirical results over the test set for the English language, while
in Table 4 results for the Italian language are reported. The first general outcome is that
algorithmic baselines, i.e. context-unaware models that use no contextual information
(multi rows) are better performing whenever richer representations are provided. The
lexical information provided by the LSK kernel is beneficial as it increases the per-
formance significantly, as well as the user profiling. They are able to provide useful
information with all kernels, but the BoWK benefits more from their adoption. English
outcomes show that the negative and neutral classes are more positively influenced by
the adoption of contextual models. It seems that the positive label is harder to manage,
even if a slight improvement is measured. In many cases the classifiers faced messages
for which no sufficient information was available. Let us consider the message “Got my
Dexter fix for the night. Until 2morw night Dexter Morgan” that is annotated as positive in
the gold standard and that has no context. All the classifiers predicts the neutral class, as
no cue exists suggesting that the message is positively biased. The same phenomenon
occurs for the message “Comedy Central made my night tonight” where the positive
attitude is not directly expressed in neither linguistic nor contextual elements. Again,
the multiclass and the sequence based classifiers predicts the neutral class.

Italian results (Table 4) shows similar trends, with good improvements with respect
to all the adopted kernel functions. Again, the BoWK benefits more by the adoption of
contextual models, as good increment are measured in both the F1Pn and the F1Pnn.
This is a clear effect on alleviating data sparsity that is inherent to a BoWK function.
When richer kernel are adopted these improvements are less evident, even though the
conversation model is able to reach a remarkable score of 69.6 in the F1Pn.

Almost all context-driven models provide an improvement with respect to their
context-unaware counterpart. Notice that there are two different behaviors in the two
languages. In fact, in English the conversation-based models are more reliable, obtain-
ing better results with respect to the hashtag-based context classifiers. In Italian, the
opposite situation is observed: the hashtag based models are more effective. In this last
setting, we argue that the different availability of conversation and hashtag contexts
plays a crucial role. In fact, hashtag contexts in Italian are far more populated with
respect to the conversation contexts. In English, the number of messages in a conversa-
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Table 4
Results over the Evalita 2014 Sentipolc Dataset.

Ctx. Positive Negative Neutral F1Pn F1Pnn
size P R F1 P R F1 P R F1

BoWK
multi - .647 .647 .647 .646 .575 .609 .439 .513 .473 .628 .576

conv

3 .673 .649 .661 .634 .662 .648 .481 .470 .476 .654 .595
6 .671 .644 .657 .613 .638 .625 .466 .460 .463 .641 .582

16 .664 .666 .665 .634 .642 .638 .457 .447 .452 .651 .585
31 .661 .663 .662 .623 .642 .633 .460 .437 .448 .647 .581

hash

3 .708 .616 .659 .630 .670 .649 .479 .507 .493 .654 .600
6 .696 .638 .666 .655 .670 .662 .476 .507 .491 .664 .606

16 .712 .671 .691 .697 .651 .673 .503 .590 .543 .682 .636
31 .708 .652 .679 .694 .683 .688 .494 .553 .522 .684 .630

BoWK+LSK
multi - .701 .707 .704 .686 .601 .641 .475 .560 .514 .672 .619

conv

3 .688 .688 .688 .671 .647 .659 .473 .500 .486 .673 .611
6 .695 .723 .709 .679 .642 .660 .506 .523 .515 .684 .628

16 .698 .696 .697 .671 .647 .659 .491 .520 .505 .678 .620
31 .698 .721 .709 .676 .644 .660 .497 .513 .505 .684 .625

hash

3 .708 .704 .706 .673 .655 .664 .484 .507 .495 .685 .622
6 .708 .696 .702 .689 .653 .670 .491 .540 .514 .686 .629

16 .708 .696 .702 .689 .653 .670 .491 .540 .514 .686 .629
31 .712 .704 .708 .700 .664 .681 .512 .560 .535 .695 .641

BoWK+USPK
multi - .682 .611 .645 .616 .608 .612 .474 .543 .506 .628 .587

conv

3 .672 .622 .646 .614 .662 .637 .467 .453 .460 .641 .581
6 .632 .655 .643 .626 .627 .626 .444 .423 .433 .635 .568

16 .644 .638 .641 .616 .640 .628 .470 .447 .458 .634 .576
31 .644 .679 .661 .609 .640 .624 .469 .400 .432 .643 .572

hash

3 .659 .619 .638 .613 .666 .638 .468 .440 .454 .638 .577
6 .676 .636 .655 .630 .651 .641 .466 .477 .471 .648 .589

16 .674 .630 .652 .624 .634 .629 .461 .487 .473 .640 .585
31 .681 .649 .665 .640 .636 .638 .481 .513 .497 .651 .600

BoWK+LSK+USPK
multi - .695 .712 .704 .693 .612 .650 .484 .557 .518 .677 .624

conv

3 .701 .718 .709 .666 .670 .668 .500 .480 .490 .689 .622
6 .707 .726 .716 .683 .668 .675 .507 .507 .507 .696 .633

16 .688 .707 .697 .678 .659 .669 .488 .493 .491 .683 .619
31 .683 .710 .696 .681 .625 .652 .481 .520 .500 .674 .616

hash

3 .698 .685 .692 .676 .662 .669 .498 .527 .512 .680 .624
6 .704 .690 .697 .669 .653 .661 .491 .520 .505 .679 .621

16 .712 .699 .705 .664 .649 .656 .503 .533 .518 .681 .627
31 .699 .688 .693 .677 .659 .668 .497 .527 .511 .681 .624

tion or in a hashtag context is similar, making the beneficial effects of the reply-to chain
more evident. In fact, the reply-to chain provides a more coherent set of messages in the
sequences, but in the Italian setting their effects are alleviated by data scarcity issues.

To further analyze what is happening when considering the contexts, let us consider
some classification examples of the multiclass and sequential models. Let us consider,
for example, the tweet “@cewitt94 I’ll see :S I have to go to Timmonsville tomorrow afternoon
and Brandon’s gonna be with me, so I’m not sure.” It is incorrectly classified as negative
by the multiclass BOWK+LSK classifier. It is, instead, correctly classified as neutral by
the corresponding conversation sequential model, considering that it is immersed in
a context of 3 previous messages whose polarity is neutral, neutral and negative. In
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order to further show the importance of the context, let us consider the positive message
“@arrington Noticed that joke when you interviewed Reid Hoffman. Better the 2nd time around
;)”. It is characterized only by a conversation context, while it has no hashtag. In this
case, the hashtag based classifier BOWK+LSK predicts a wrong class for that message, i.e.
negative. The conversation context contains another message whose class is annotated
as positive: “This is by far the biggest TechCrunch Disrupt ever with 3,600 attendees. Clearly
they’re completely falling apart without me :-)”. The conversation-based classifier with
BOWK+LSK observations is thus able to exploit the contextual information to correctly
predict the positive class. In the Italian setting we observe similar outcomes. Let us
consider the message “@fioryrus ti do il numero in dm? :)”. This message seems neutral
(despite of the smile), and the BOWK+LSK multiclassifier predicts such polarity label.
In reality this message belongs to a context of 3 messages whose polarity is neutral,
neutral and positive. The preceding positive message of the target one is thus informing
the sequential classifier that, probably, the target message is positive as well.

5. Conclusions

In this work, the role of contextual information in supervised Sentiment Analysis over
Twitter is investigated for two different languages, English and Italian. While the task
is eminently linguistic, as resources and phenomena lie in the textual domain, other
semantic dimensions are worth to be explored. In this work, three types of contexts for
a target tweet have been studied. A markovian approach has been adopted to inject
contextual evidence (e.g. the history of preceding posts) in the classification of the most
recent, i.e. a target, tweet. An improvement of accuracy in the investigated tasks is
measured. It is a straightforward result as the approach is free of language specific re-
sources or manually engineered features. The different employed contexts show specific
but systematic benefits. In these experiments, users have only been partially explored
through the USPK. It seems to express a more static notion of context (i.e. the attitude
of the user as observed across a longer period than individual conversations).

Future work will concentrate on the exploration of more sophisticated user models,
whose contribution is expected to improve the overall impact. The user sentiment
profile adopted in this work, through the USPK similarity, is in fact a first approximation
in the direction of exploiting user information during training. Here, we analyzed
messages without considering any existing sentiment resource. It could be interesting to
adopt a polarity lexicon, e.g. (Mohammad and Turney 2010) or (Castellucci, Croce, and
Basili 2015), to strengthen the final system within a context based framework. Moreover,
this work explores a notion of context restricted to simple tweet sequences. In Social
Networks, information flows according to richer structures, e.g. graph of messages and
users: a user is exposed to messages whose streams in the community are very complex,
i.e. not linear. Graph-based models of the context are appealing, as they provide more
expressive ways to represent the messages and (other) users influencing the writer. This
is an interesting direction to be further explored.
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NLP techniques can enrich unstructured textual data, detecting topics of interest and emotions.
The task of understanding emotional similarities between different topics is crucial, for example,
in analyzing the Social TV landscape. A measure of how much two audiences share the same
feelings is required, but also a sound and compact representation of these similarities. After
evaluating different multivariate approaches, we achieved these goals by applying Multiple
Correspondence Analysis (MCA) techniques to our data. In this paper we provide background
information and methodological reasons to our choice. MCA is especially suitable to ana-
lyze categorical data and detect the main contrasts among them: NLP-annotated data can
be transformed and adapted to this framework. We briefly introduce the semantic annotation
pipeline used in our study and provide examples of Social TV analysis, performed on Twitter
data collected between October 2013 and February 2014. The benefits of examining emotions
shared in social media using multivariate statistical techniques are highlighted: using additional
dimensions, instead of "simple" polarity of documents, allows to detect more subtle differences
in the reactions to certain shows.

1. Introduction

Classification of documents based on topics of interest is a popular NLP research area (see, for
example, Hamamoto et al. (2005)). Another important subject, especially in the context of Web
2.0 and social media, is the sentiment analysis, mainly meant to detect polarities of expressions
and opinions (Liu 2012). Sentiment Analysis (SA) is both a topic in natural language processing
which has been investigated for several years and a tool for social media monitoring which is
used in business services. A recent survey that explores the latest trends is Cambria (2013).
While the first attempts on English texts date back to the late 90s, SA on Italian texts is a more
recent area of research (probably the first scientific publication is Dini and Mazzini (2012)). A
sentiment analysis task which has seen less contributions, but of growing popularity, is the study
of emotions (Wiebe et al. 2005), which requires introducing and analyzing multiple variables
(appropriate "emotional dimensions") potentially correlated. This is especially important in the
study of the so-called Social TV (Cosenza 2012): people can share their TV experience with other
viewers on social media using smartphones and tablets. We define the empirical distribution of
different emotions among viewers of a specific TV show as its emotional profile. Comparing at
the same time the emotional profiles of several formats requires appropriate descriptive statistical
techniques. During the research we conducted, we evaluated and selected geometrical methods
that satisfy these requirements and provide an easy to understand and coherent representation of
the results. The methods we used can be applied to any dataset of documents classified based on

∗ Via San Quintino 31 - 10121 Torino, Italia. E-mail: tarasconi@celi.it.
∗∗ Via San Quintino 31 - 10121 Torino, Italia. E-mail: ditomaso@celi.it.
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topics and emotions; they also represent a potential tool for the quantitative analysis of any NLP
annotated data.
We used the BlogMeter platform1 to download and process textual contents from social networks
(Bolioli et al. 2013). Topics correspond to TV programs discussed on Twitter. Nine emotions are
detected: the basic six according to Ekman (1972) (anger, disgust, fear, joy, sadness, surprise),
love (a primary one in Parrot’s classification) and like/dislike expressions, quite common on
Twitter.
Topics and emotions are detected using a rule-based system. In the case of TV episodes, the
mention of a show or its characters in the context of a tweet is the most important factor in
assigning it to a specific topic. To improve precision in identifying posts connected to the Social
TV, the temporal range of analysis can be reduced to a set of windows centered around relevant
episodes.
We examined the emotional landscape of the Italian Social TV during December 2013, treating
each show as a different topic. The analysis evidenced a strong negative mood associated with
politics and the programs that tackled this subject. We then focused on two popular formats:
the music talent show X Factor and the competitive cooking show MasterChef. Each episode
was considered as a different topic. Whereas the progression of the season through emotional
phases (from selections to finals) was clearly visible in the case of X Factor, MasterChef was
much more erratic and strongly influenced by scripted events taking place in each episode. By
comparing directly X Factor and MasterChef in the same analysis, we concluded that the subject
of the show strongly influences the reactions of its viewers, in a way that goes beyond the simple
expression of positive/negative judgements. This supports the claim that the analysis of emotions
can provide additional information and detect deeper differences than polarity in the study of
social media.
The paper is organized as follows: section 2 describes the tools used for topic and emotion
detection, section 3 introduces the mathematical model used to analyze NLP-annotated data,
section 4 focuses on the choice of statistical methods adopted to represent and extract the most
relevant structures in our datasets and section 5 presents the case studies.
This research was originally presented in reduced form at CLiC 2014, the First Italian Conference
on Computational Linguistics.

2. A social media monitoring platform

The processing tools which we will describe are implemented in a social media monitoring
service called BlogMeter, operating since 2009. The monitoring process includes three main
phases:

� Listening: thanks to purpose-developed data acquisition systems, the platform detects and
collects from the web potentially interesting data;� Understanding: a semantic engine is used to structure and classify the conversations in
accordance to the defined drivers (topics and entities mentioned in the texts, but also
emotions of interest);� Analysis: through the analysis platform the user can navigate the conversations in a
structured way, aggregate the drivers in one or more dashboards, discover unforeseen
trends in the concept clouds and drill down the data to read the messages inside their
original context.

1 www.blogmeter.it
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It is of particular interest for our research the understanding phase, which includes automatic
classification and sentiment analysis. It can be further divided into:

� creation of a domain-based taxonomy (i.e. an ontology of topics such as brands, products
or people);� identification and automatic classification of relevant documents (according to the taxon-
omy);� polarity and emotion detection.

The monitored sources are typically user-generated media, such as blogs, forums, social net-
works, news groups, content sharing sites, sites of questions and answers (Q&A), reviews of
products / services, which are active in many countries and in different languages. The overall
number of sources is more than 500,000 blogs (of which approximately 70,000 active, with a
post in the last three months) and 700 gathering places (forums, newsgroups, Q&A sites, content
sharing platforms, social networks). This computation considers Facebook and Twitter as single
sources, but in fact, they are the largest collectors of conversations.

2.1 Semantic annotation pipeline

Documents extracted from the web in the form of unstructured information are made available
to the semantic annotation pipeline which analyzes and classifies them according to the domain-
based taxonomies defined for the client. The annotation pipeline uses the UIMA framework (the
Unstructured Information Management Architecture originally developed by IBM and now by
the Apache Software Foundation 2).
UIMA annotators enrich the documents in terms of linguistic information, recognition of entities
and concepts, identification of relations between concepts, entities and attitudes expressed in the
text (opinions, mood states and emotions). Some linguistic resources and annotators are common
to different application domains, while others are domain dependent. We will not describe here
the pipeline modules in details, and we will focus on the main linguistic resource used in the
sentiment analysis module, i.e. a concept-level sentiment lexicon for Italian.
The sentiment lexicon is used by the semantic annotator, which recognizes opinions and ex-
pressions of mood and emotions and associates them with the opinion targets. This component
operates both on the sentence level (in order to treat linguistic phenomena such as negation and
quantification) and on the document leve (in order to identify relations between elements that are
in different sentences).

2.2 A concept-level sentiment lexicon for Italian

In this section we describe the sentiment lexicon used by the semantic annotator, i.e. the reposi-
tory containing terms, concepts and patterns used in the sentiment annotation. Researchers have
been building sentiment lexica for many years, in particular for the English language, and a
review on recent results can be found for example in Cambria et al. (2013). The sentiment lexicon
for Italian contains about 10.000 entries (6.200 single words and 3.400 multi-word expressions).
Each entry has information about sentiment, i.e. polarity, emotions, and domain application
(therefore it is a contextualized sentiment lexicon). It has been created and updated during the
past three years, performing social media monitoring and SA in different application domains.
An important resource used in the creation of the lexicon is the WordNet-Affect project (Strap-
parava and Valitutti 2004).

2 UIMA Specifications: http://uima.apache.org/uima-specification.html
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One aspect worth mentioning is that the valence of many words can change in different contexts
and domains. The word "accuratezza" ("accuracy"), for example, has a default positive valence,
just as it is for "affare d’oro" ("to do a roaring trade"). On the contrary, "andare a casa" ("going
home") has no polarity in a neutral context, as long as it is not used in an area such as sentiment
on Sanremo Festival, where it means instead being eliminated from the singing competition.
Similarly, "truccato" ("to have make up on" or "to be rigged"), would not have negative polarity
if the domain was a fashion show. Instead, in the field of online games or betting, the perspective
changes.

2.3 Emotions

The interest for emotion detection in social media monitoring grew in 2011 after the publication
of a paper by Bollen et al. (2011), where the authors argued that the analysis of mood in Twitter
posts could be used to predict stock market movements up to 6 days in advance. In particular,
they identified "calmness" as the predictive mood dimension, within a set of 6 different mood
dimensions (happiness, kindness, alertness, sureness, vitality and calmness). The definition of
a set of basic (or primary) emotions is a debated topic, and the study and analysis of emotions
and their expression in texts obviously has a long tradition in philosophy and psychology (see
for example Galati (2002)). In NLP tasks, Ekman’s six basic emotions (anger, disgust, fear, joy,
sadness, surprise) have often been used (e.g. in Strapparava and Valitutti (2004)). The platform
we employed in our research adopts Ekman’s list of emotions and "love", which is a primary
emotion in Parrot’s classification. Considering expressions of "like" and "dislike" as "emotional"
was necessary to cover a large amount of social media documents, which clearly express a feeling
towards a subject being discussed, but not an emotion in the common sense.
A similar approach is described in Roberts et al. (2012).
An argument could be made against adding arbitrary variables to a pre-existing model of basic
emotions. However, from the perspective of an exploratory analysis of an unknown dataset, these
variables can better capture specific features in social network communication. The issue of
adding potentially correlated or even redundant variables is tackled in the dimension reduction
framework we will define and employ in the following sections.
The manual annotation of emotions in a reference Italian corpus would be a useful advance for
testing the accuracy of the automatic system.

2.4 Evaluation

The sentiment semantic annotator was partially evaluated on polarity classification of Twitter
messages (with a focus on politics), which was conducted using the Evalita 2014 SENTIPOLC
test set. As reported in Basile et al. (2014) it’s a collection of 1,935 tweets derived from existing
corpora: SENTI-TUT (Bosco et al. 2013) and TWITA (Basile and Nissim 2013).
We performed two runs of the analysis procedure: the first using only a generic lexicon, the
second using a lexicon enriched specifically for the political domain. Both are pre-existing
resources compared to the train and test set used for the SENTIPOLC task, which were not
included in the creation of the lexicons.
Precision P, recall R and F-score were computed for the positive and negative predicted fields,
separately for the different values that the field can assume (0 and 1). An average F-score
for positive and negative polarities was then computed to calculate the final F-score F for the
SENTIPOLC task. These metrics can be compared to the results achieved by the Evalita 2014
participants. Results for the CELI pipeline are given in Table 1. Our results are given for different
lexicons used (generic/political).
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Table 1
Precision, recall and F-score on the full test set, per class and combined

CELIgen CELIpol

precpos
0 0.7904 0.7944

recpos
0 0.8357 0.8533

Fpos
0 0.8124 0.8228

precpos
1 0.5419 0.5708

recpos
1 0.4674 0.4691

Fpos
1 0.5019 0.5150

Fpos 0.6572 0.6689
precneg0 0.6664 0.6920
recneg0 0.8643 0.8596
Fneg

0 0.7526 0.7667
precneg1 0.7401 0.7565
recneg1 0.4718 0.5328
Fneg

1 0.5762 0.6253
Fneg 0.6644 0.6960
combined F 0.6608 0.6824

3. Vector space model and dimension reduction

Let D be the initial data, a collection of mD documents. Let T be the set of nT distinct topics
and E the set of nE distinct emotions that the documents have been annotated with. Let n =
nT + nE . A document di ∈ D can be represented as a vector of 1s and 0s of length n, where entry
j indicates whether annotation j is assigned to the document or not. The document-annotation
matrix D is defined as the mD × n matrix of 1s and 0s, where row i corresponds to document
vector di, i = 1, . . . ,mD. For the rest of our analysis, we suppose all documents to be annotated
with at least one topic and one emotion. D can be seen as a block matrix:

DmD×n =
(
TmD×nT

EmD×nE

)
,

where blocks T and E correspond to topic and emotion annotations.
The topic-emotion frequency matrix TE is obtained by multiplication of T with E:

TE = TTE,

thus (TE)ij is the number of co-occurrences of topic i and emotion j in the same document.
In the Social TV context, rows of TE represent emotional profiles of TV programs on Twitter.
From documents we can obtain emotional impressions which are (topic, emotion) pairs.
Let us consider, for example, the following document (tweet):

"@michele_bravi sono star felice che tu abbia vinto xfactor :), cavolo telo meriti anche io ci
vorrei andare ma ho paura :( ",

which can be loosely translated as



96

Italian Journal of Computational Linguistics Volume 1, Number 1

"@michele_bravi I’m very happy that you won xfactor :), you really deserve it and I would like
to participate too but I’m scared :( ".

This document can be annotated with {topic = X Factor, emotion = fear, emotion = love}. When
represented as a vector, its non-zero entries correspond to X Factor, fear, love indices. It generates
distinct emotional impressions (X Factor, fear) and (X Factor, love).
Let J be the set of all mJ emotional impressions obtained from D. Then we can define, in a
manner similar to D, the corresponding impression-annotation matrix J, a mJ × n matrix of 0s
and 1s. J can be seen as a block matrix as well:

J =
(
TJ EJ

)
,

where blocks TJ and EJ correspond to topics and emotions of the impressions.
In our previous example, the emotional impression (X Factor, fear) can be represented as a vector
with only two non-zero entries: one corresponding to column X Factor in TJ and one to column
fear in EJ .
We can therefore represent documents or emotional impressions in a vector space of dimension
n and represent topics in a vector space of dimension nE . Our first idea was to study topics in the
space determined by emotional dimensions, thus obtaining emotional similarities from matrix
representation TE . These similarities can be defined using a distance between topic vectors or,
in a manner similar to information retrieval and Latent Semantic Indexing (LSI) (Manning et al.
2008), the corresponding cosine. Our first experiments highlighted the following requirements:
1. to reduce the importance of (potentially very different) topic absolute frequencies (e.g. using

cosine between topic vectors);

2. to reduce the importance of emotion absolute frequencies, giving each variable the same
weight;

3. to graphically represent, together with computing, emotional similarities, as already men-
tioned;

4. to highlight why two topics are similar, in other words which emotions are shared.
In multivariate statistics, the problem of graphically representing an observation-variable matrix
can be solved through dimension reduction techniques, which identify convenient projections
(2-3 dimensions) of the observations. Principal Component Analysis (PCA) is probably the most
popular of these techniques. See Abdi and Williams (2010) for an introduction. It is possible to
obtain from TE a reduced representation of topics where the new dimensions better explain the
original variance. PCA and its variants can thus define and visualize reasonable emotional dis-
tances between topics. After several experiments, we selected Multiple Correspondence Analysis
(MCA) as our tool, a technique aimed at analyzing categorical and discrete data. It provides a
framework where requirements 1-4 are fully met, as we will show in section 4. An explanation
of the relation between MCA and PCA can be found, for example, in Gower (2006).

4. Multiple Correspondence Analysis

(Simple) Correspondence Analysis (CA) is a technique that can be used to analyze two categor-
ical variables, usually described through their contingency table C (Greenacre 1983), a matrix
that displays the frequency distribution of the variables.
CA is performed through a Singular Value Decomposition (SVD) (Meyer 2000) of the matrix
of standardized residuals obtained from C. Residuals represent the deviation from the expected
distribution of the table in the case of independence between the two variables. SVD of a matrix
finds its best low-dimensional approximation in quadratic distance. CA procedure yields new
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axes for rows and columns of C (variable categories), and new coordinates, called principal
coordinates. Categories can be represented in the same space in principal coordinates (symmetric
map). The reduced representation (the one that considers the first k principal coordinates) is the
best k-dimensional approximation of row and column vectors in chi-square distance (Blasius
and Greenacre 2006). Chi-square distance between column (or row) vectors is a Euclidean-type
distance where each squared distance is divided by the corresponding row (or column) average
value. Chi-square distance can be read as Euclidean distance in the symmetric map and allow
us to account for different volumes (frequencies) of categories. It is therefore desirable in the
current application, but it is defined only between row vectors and between column vectors.
CA measures the information contained in C through the inertia I , which corresponds to variance
in the space defined by the chi-square distance, and aims to explain the largest part of I using the
first few new axes. Matrix TE can be seen as a contingency table for emotional impressions, and
a representation of topics and emotions in the same plane can be obtained by performing CA.
Superimposing topics and emotions in the symmetric map apparently helps in its interpretation,
but the topic-emotion distance doesn’t have a meaning in the CA framework. We have therefore
searched for a representation where analysis of topic-emotion distances was fully justified.
MCA extends CA to more than two categorical variables and it is originally meant to treat
problems such as the analysis of surveys with an arbitrary number of closed questions (Blasius
and Greenacre 2006). But MCA has also been applied with success to positive matrices (each
entry greater or equal to zero) of different nature and has been recast (rigorously) as a geometric
method (Le Roux and Rouanet 2004). MCA is performed as the CA of the indicator matrix of
a group of respondents to a set of questions or as the CA of the corresponding Burt matrix
(Greenacre 2006). The Burt matrix is the symmetric matrix of all two-way crosstabulations
between the categorical variables. Matrix J can be seen as the indicator matrix for emotional
impressions, where the questions are which topic and which emotion are contained in each
impression. The corresponding Burt matrix JB can be obtained by multiplication of J with itself:

JB = JTJ =

(
TT

JTJ TT
JEJ

ET
JTJ ET

JEJ

)
.

Diagonal blocks TT
JTJ e ET

JEJ are diagonal matrices and all the information about correspon-
dences between variables is contained in the off-diagonal blocks. From the CA of the indicator
matrix we can obtain new coordinates in the same space both for respondents (impressions)
and for variables (topics, emotions). From the CA of the Burt matrix it is only possible to
obtain principal coordinates for the variables. MCAs performed on J and JB yield similar
principal coordinates, but with different scales (different singular values). Furthermore, chi-
square distances between the columns/rows of matrix JB include the contributions of diagonal
blocks. For the same reason, the inertia of JB can be extremely inflated.
Greenacre (2006) solves these problems by proposing an adjustment of inertia that accounts
for the structure of diagonal blocks. Inertia explained in the first few principal coordinates is
thus estimated more reasonably. MCA of the Burt matrix with adjustment of inertia also yields
the same principal coordinates as the MCA of the indicator matrix. Finally, in the case of
two variables, CA of the contingency table and MCA yield the same results. Thus the three
approaches (CA, MCA in its two variants) are unified.
When analyzing topic and emotion variables in this framework, we are ignoring co-occurrences
of multiple topics or multiple emotions in the same documents. Discounting interactions between
topics is desiderable, as our aim in this analysis is to focus on emotional similarities between
subjects of online conversation. Discounting interactions between emotions can potentially
discard useful information, because emotions that often co-occur in the same span of text might
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Figure 1
MCA of most emotional Italian TV programs discussed on Twitter during December 2013.

be considered closer in an ideal emotional space (for example love and joy). However, the amount
of tweets that contain more than one annotation of type emotion is very small (less than 1% in
the considered datasets). Moving to the analysis of emotional impressions allows us to adopt
the MCA framework and, in particular, to better estimate the explained inertia of our dataset:
considering interactions between emotion variables would instead change the structure of one
diagonal block in the Burt matrix and the adjustment proposed by Greenacre could not be applied.
MCA offers possibilities common to other multivariate techniques. In particular, a measure on
how well single topics and emotions are represented in the retained axes is provided (quality of
representation).
Symmetric treatment of topics and emotions facilitates the interpretation of axes. Distances
between emotions and topics can now be interpreted and, thanks to them, it is possible to
establish why two topics are close in the reduced representation. An additional (and interesting)
interpretation of distances between categories in terms of sub-clouds of individuals (impressions)
is provided by Le Roux and Rouanet (2004).

5. Case studies

5.1 One month of Twitter TV

Data were collected during December 2013 (1,2 million tweets). Tweets were aggregated to
generate monthly TV show profiles. We selected the 15 "most emotional" shows to analyze. MCA
was performed using programs and emotions as variables in a vector space model as described
in sections 3 and 4. Results are shown in Figure 1. Size of programs’ points is proportional to the
number of distinct emotional impressions for that category. As explained in section 4, distances
between emotions and programs have a mathematical interpretation and can serve as a measure
of correlation. Thanks to this fact we were able to perform a straightforward classification of
TV shows, based on the closest emotion in the MCA subspace. This classification is represented
by programs’ colors in Figure 1. We can see, for example, that Italian talk shows about politics
(second quadrant) are similar and share the most negative emotions. Instead, entertainment shows
are characterized by better mood overall, although they do not share the full emotional spectrum.
For example, MasterChef’s public is dominated with anger. Fear, despite not being dominant, is
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Table 2
X Factor and MasterChef datasets: emotional impressions about the shows found on Twitter.

X Factor 7
Date Emotional impressions

26/09/13 23,712
03/10/13 15,364
10/10/13 11,932
17/10/13 24,116
24/10/13 57,413
31/10/13 26,301
07/11/13 37,441
14/11/13 36,363
21/11/13 29,405
28/11/13 34,097
05/12/13 35,438
12/12/13 121,106

TOT. 452,688

MasterChef Italy
Date Emotional impressions

19/12/13 5,926
26/12/13 4,495
02/01/14 6,796
09/01/14 7,087
16/01/14 9,721
23/01/14 8,227
30/01/14 8,964
06/02/14 9,427

TOT. 60,643

an important component of dark comedy Teen Wolf’s emotional profile. As many multivariate
techniques, MCA also provides a measure of the quality of our representation (Blasius and
Greenacre 2006). In this case 94% of statistical information (or inertia) was retained, so this
can be considered an excellent approximation of the initial dataset.

5.2 Analyzing whole TV seasons

It is of interest not only to analyze the aggregated profile of a TV show, encompassing several
weeks or months, but also to compare individual profiles of each episode. For example, the
7th edition of popular Italian music talent show X Factor consists of 12 episodes, including
the auditions. We want to represent these 12 episodes and their emotional similarities with the
highest precision in two dimensions. Another program we examined in detail is the competitive
cooking show MasterChef Italy (3rd edition). See Table 2 for details on our datasets. Data were
collected on a weekly basis, between 24 October and 12 December 2013 for X Factor, between
19 December 2013 and 6 February 2014 for MasterChef. X Factor obtained on average 47k
emotional impressions for each episode; MasterChef an average of 8k impressions/episode.
Within the MCA framework, each episode can be considered as a separate category for the
program variable we introduced in section 4. A representation similar to the one we obtained
in section 5.1 can therefore be obtained for each show. See Figure 2 and 3 for results.
Emotional changes in the audience are reflected in the episodes’ positions, numbered progres-
sively.
As we briefly mentioned in section 4, MCA does not discount the weight of individual profiles,
which in our case is the sheer number of emotional impressions for each episode. The origin
of axes in an MCA map is also the weighted mean point of active variables’ points (as shown
in figure) and the mean point of emotional impressions’ points (not represented). The origin
(or barycenter) can then be taken as the average profile (an overall "summary") for the TV
show in exam: a fact that we chose to highlight in our representation. Episodes are numbered
progressively in each plot. As previously seen, the first axis expresses the contrast between
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Figure 2
MCA of X Factor 7.

Figure 3
MCA of MasterChef Italy, first 8 episodes of 3rd season.

positive and negative mood.
Evolution phases are clearly visible in the X Factor plot (Figure 2). The selection process of the
first three episodes is dominated by love and fear for the contestants. The beginning of the finals
is marked by a strong and visceral disagreement about how the selections ended. Judgments
dominates most of the season, as the audience is able to directly evaluate the contestants. The
final episode is the most positive and emotional of the whole season. 73% of total inertia was
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Figure 4
Comparison via MCA between X Factor and MasterChef formats, 2013-2014 editions.

retained in this map.
The MCA plot of the 3rd edition of MasterChef Italy (Figure 3) tells a different story (64%
retained inertia). No trend emerges so there is a much greater dependence on single episodes, as
described in the plot.

5.3 Comparison between MasterChef and X Factor

If we represent MasterChef and X Factor in the same space, individual episodes can still be used
as categories for emotional impressions (Figure 4). In order to highlight differences between
the two formats, we have plotted weighted mean points, obtained separately for each one of
them. For example, the X Factor point corresponds to the (scaled) barycenter of the cloud of
emotional impressions related to this talent show. Distances from the X Factor and MasterChef
points have the same geometric and statistical interpretations as the distances between active
variables’ points. This type of analysis is strictly related to structured data analysis, where the
dataset comes with a natural partition or structuring factor: in our case single episodes (original
variables) are naturally grouped into their respective seasons. For more information on structured
data analysis, see for example Rouanet (2006). Note that we are comparing X Factor’s live show
(last 8 episodes) with the first 8 episodes of MasterChef. In fact, at the moment our analysis was
performed, MasterChef still had to reach its conclusion.
When MasterChef and X Factor are represented in the same MCA plot, we can clearly see how
different these two shows are (82% retained inertia).
By looking at the position of emotions, the first axis can be interpreted as the contrast between
moods (positive and negative) of the public, and this is therefore highlighted as the most
important structure in our dataset. X Factor was generally perceived in a more positive way than
MasterChef. The advantage of incorporating emotions in our sentiment analysis is more manifest
when we look at the second retained axis. We can say the audience of X Factor lives in a world of
opinion dominated by like/dislike expressions, while the public of MasterChef is characterized
by true and active feelings concerning the show and its protagonists. This is coherent with the
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fact that viewers of X Factor could directly evaluate the performances of contestants. This was
not possible for the viewers of MasterChef, who focused instead on the most outstanding and
emotional moments of the show. Reaching these conclusions would not have been possible by
looking at simple polarity of impressions.
This difference in volume between the two shows is reflected in the distances from the origin,
which can be considered as the average profile, and therefore closer to X Factor.
Other detailed examples on structuring an MCA analysis can be found in Rouanet (2006).

6. Conclusions and further researches

By applying carefully chosen multivariate statistical techniques, we have shown how to represent
and highlight important emotional relations between topics. We presented some case studies,
describing in detail the analyses of some live TV shows as they were discussed on Twitter.
Further results in the MCA field can be experimented on datasets similar to the ones we used. For
example, additional information about opinion polarity and document authors (such as Twitter
users) could be incorporated in the analysis. The geometric approach to MCA (Le Roux and
Rouanet 2004) could be interesting to study in greater detail the clouds of impressions and
documents (J and D matrices); authors could also be considered as mean points of well-defined
sub-clouds.
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Over the last ten years, the use of language technologies was successfully extended to the
study of the language learning process. The paper reports the first promising results of an
interdisciplinary study combining methods and analysis techniques from computational linguis-
tics, linguistics and experimental pedagogy and aimed at tracking the development of written
language competence over the years in high school students. In particular, the study is based
on the computational analysis of essays written by Italian L1 learners, which were collected
during the first and second year of lower secondary school, using automatic linguistic annota-
tion and knowledge extraction tools. The analysis is carried out from a linguistic perspective,
based on lexical, morpho-syntactic and syntactic features, by also taking into account students’
background information. Achieved results show that the distribution of features changes over
time according to the development of student writing skills and led to the identification of a set
of traits qualifying the learning process.

1. Introduzione

Gli ultimi dieci anni hanno visto un crescente interesse verso le tecnologie del lin-
guaggio come punto di partenza per ricerche interdisciplinari finalizzate allo studio
delle competenze linguistiche di apprendenti la propria lingua madre (L1) o una lingua
straniera (L2). Sebbene con obiettivi diversi, le ricerche condotte a livello internazionale
sono accomunate da una medesima metodologia basata sull’uso di strumenti di an-
notazione linguistica automatica e condividono il medesimo obiettivo di indagare la

∗ Dipartimento di Psicologia dei processi di Sviluppo e socializzazione, Università di Roma “La Sapienza”.
E-mail: alessia.barbagli@gmail.com

∗∗ Dipartimento di Psicologia dei processi di Sviluppo e socializzazione, Università di Roma “La Sapienza”.
E-mail: pietro.lucisano@uniroma1.it
† Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC-CNR), ItaliaNLP Lab.

E-mail: felice.dellorletta@ilc.cnr.it
‡ Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC-CNR), ItaliaNLP Lab.

E-mail: simonetta.montemagni@ilc.cnr.it
§ Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC-CNR), ItaliaNLP Lab.

E-mail: giulia.venturi@ilc.cnr.it

© 2015 Associazione Italiana di Linguistica Computazionale



Italian Journal of Computational Linguistics Volume 1, Number 1

‘forma linguistica’ di corpora di produzioni spontanee. In questo senso il testo linguis-
ticamente annotato costituisce il punto di partenza all’interno del quale rintracciare
una serie di caratteristiche linguistiche (lessicali, grammaticali, sintattiche, ecc.) che
possano essere considerate indicatori affidabili per ricostruire il profilo linguistico delle
produzioni. Lo scopo è ad esempio quello di studiare in che modo tali caratteristiche
sono rivelatrici della qualità di scrittura di apprendenti una lingua straniera (Deane and
Quinlan 2010) o quello di monitorare la capacità di lettura come componente centrale
della competenza linguistica (Schwarm e Ostendorf 2005; Petersen e Ostendorf 2009).
La medesima metodologia è stata utilizzata per monitorare lo sviluppo nel tempo
della sintassi nel linguaggio infantile a partire da trascrizioni del parlato (Sagae et al.
2005; Lu 2007; Lubetich and Sagae 2014). L’analisi automatica della ‘forma linguistica’
di produzioni di apprendenti rappresenta il punto di partenza anche per identificare
eventuali deficit cognitivi attraverso misure di complessità sintattica (Roark et al. 2007)
o di associazione semantica (Rouhizadeh et al. 2013).

Da un punto di vista più applicativo, tecnologie basate sul trattamento automatico
del linguaggio sono oggi impiegate nella costruzione di Intelligent Computer–Assisted
Language Learning systems (ICALL) (Granger 2003), per sviluppare strumenti di val-
utazione automatica delle produzioni scritte per lo più di apprendenti una lingua
straniera (Attali and Burstein 2006) o per mettere a punto programmi di correzione
automatica degli errori commessi da apprendenti una L2 (Ng et al. 2013, 2014). A
livello internazionale, ciò è dimostrato dall’organizzazione di numerose conferenze
sull’argomento come ad esempio il Workshop on Innovative Use of NLP for Building
Educational Applications (BEA), arrivato nel 2015 alla sua decima edizione1.

A questa panoramica va aggiunto il fatto che strumenti di estrazione della
conoscenza sono oggi utilizzati per analizzare il ‘contenuto’ di produzioni per lo più
scritte. A livello internazionale, i metodi tradizionalmente impiegati a questo scopo
(Knowledge Tracing systems) fanno riferimento a un comune paradigma che permette
di modellare il processo di apprendimento delle conoscenze attraverso l’analisi di una
serie di compiti svolti nel tempo dagli studenti e valutati dagli insegnanti (Corbett and
Anderson 1994). Tali metodi non sono basati su strumenti di trattamento automatico del
linguaggio, ma stanno diventando sempre più d’interesse all’interno della comunità di
Machine Learning2 in contesti di apprendimento personalizzato a distanza (Adaptive
E–learning) (Piech et al. 2015; Ekanadham and Karklin 2015).

Il presente contributo si pone in questo contesto di ricerca, riportando i primi
risultati di uno studio più ampio, tuttora in corso, condotto a partire da un corpus
di produzioni scritte di studenti italiani nel primo e nel secondo anno della scuola
secondaria di primo grado. Si tratta di uno studio finalizzato a costruire un modello
di analisi empirica in grado di monitorare l’evoluzione sia della ‘forma linguistica’
sia del ‘contenuto’ utilizzando strumenti di annotazione linguistica automatica uniti
a tecnologie di estrazione automatica di conoscenza da testi. Come discusso in quanto
segue, l’approccio messo a punto si ripropone di monitorare tale evoluzione sia nel
tempo (nel passaggio cioè dal primo al secondo anno di scuola) sia rispetto ad una serie
di variabili di sfondo (come ad esempio il background familiare, le abitudini personali,
ecc.) rintracciate grazie ad un questionario studenti distribuito in classe.

Il carattere innovativo di questa ricerca nel panorama nazionale e internazionale
si colloca a vari livelli. Sul versante metodologico, la ricerca qui delineata rappresenta

1 http://www.cs.rochester.edu/∼tetreaul/naacl-bea10.html
2 http://dsp.rice.edu/ML4Ed_ICML2015
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il primo studio finalizzato al monitoraggio dell’evoluzione del processo di apprendi-
mento linguistico della lingua italiana (come lingua madre) condotto con strumenti di
annotazione linguistica automatica e di estrazione della conoscenza. Come preceden-
temente discusso, sino ad oggi le ricerche a livello internazionale che si sono basate
sull’uso di tecnologie del linguaggio per monitorare l’evoluzione nel tempo di com-
petenze linguistiche di apprendenti una lingua madre si sono per lo più concentrate
sull’analisi di produzioni orali infantili. Al contrario, chi si è interessato allo studio
dell’evoluzione delle abilità di scrittura lo ha fatto a partire da produzioni di appren-
denti una lingua straniera. Minore attenzione è stata dunque dedicata all’uso di tali
tecnologie per lo studio diacronico di come evolvono le abilità di scrittura di studenti
madrelingua. Per quanto riguarda la lingua italiana, all’interno di due precedenti studi
di fattibilità, (Dell’Orletta e Montemagni 2012) e (Dell’Orletta et al. 2011) hanno di-
mostrato che le tecnologie linguistico–computazionali possono giocare un ruolo cen-
trale nella valutazione della competenza linguistica di studenti madrelingua in ambito
scolastico e nel tracciarne l’evoluzione attraverso il tempo. Questo contributo rappre-
senta uno sviluppo originale e innovativo di questa linea di ricerca all’interno della
quale l’uso congiunto di strumenti di annotazione linguistica automatica e di estrazione
di conoscenza rappresenta un’ulteriore innovazione metodologica. Ciò è reso possibile
dalla particolare conformazione interna del corpus di produzioni scritte utilizzato in
questo lavoro e descritto nei paragrafi successivi.

La scelta del ciclo scolastico e dei tipi di produzioni scritte analizzate è un altro
elemento di novità di questo studio, soprattutto sotto il profilo di ricerca in pedagogia
sperimentale. Non solo infatti è stato scelto il primo biennio della scuola secondaria di
primo grado come ambito scolastico da analizzare perché poco indagato dalle ricerche
empiriche, ma sono stati anche analizzati i temi di studenti ai quali era stato richiesto
di dare ad un coetaneo dei consigli per scrivere un buon tema. Questo ha permesso
di indagare come cambia (a livello di ‘contenuti’) la percezione dell’insegnamento
della scrittura nel passaggio dal primo al secondo anno di scuola attraverso la pratica
di scrittura (analisi della ‘forma linguistica’). Poche sono state infatti sino ad oggi le
indagini che hanno verificato i risultati dell’effettiva pratica didattica derivata dalle in-
dicazioni previste dai programmi ministeriali relativi a questo ciclo scolastico, a partire
dal 1979 fino alle Indicazioni Nazionali del 2012. Al contrario, gli studi si sono per lo più
concentrati sull’educazione linguistica (Rigo 2005) e in modo specifico sulla competenza
testuale anche in termini di produzione.

In quanto segue, nel Paragrafo 2 introdurremo l’approccio del più ampio contesto
di ricerca in cui questo contributo si inserisce. Dopo aver illustrato la metodologia e gli
strumenti di analisi linguistico–computazionale qui adottati (Paragrafo 3), nei Paragrafi
4 e 5 riporteremo i primi risultati ottenuti. Infine, nel Paragrafo 6 trarremo alcune
conclusioni e tratteggeremo gli sviluppi futuri di questa ricerca.

2. Il contesto e i dati della ricerca

Il contesto a cui fa riferimento questo studio è quello della ricerca IEA IPS (Association
for the Evaluation of Educational Achievement, Indagine sulla Produzione Scritta) (Purvues
1992), un’indagine sull’insegnamento e sull’apprendimento della produzione scritta
nella scuola, che agli inizi degli anni ’80 coinvolse quattordici paesi di tutto il mondo, tra
cui l’Italia (Lucisano 1988; Lucisano e Benvenuto 1991). Prendendo le mosse dai risultati
raggiunti, il presente contributo si basa sull’ipotesi che nei primi due anni della scuola
media superiore di primo grado si realizzino dei cambiamenti rilevanti sia nel modo
in cui gli studenti si approcciano alla scrittura sia nel modo stesso in cui essi scrivono.
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L’intuizione è che ciò sia dovuto al fatto che gli studenti sono sottoposti nel passaggio
dal primo al secondo anno di scuola a un insegnamento più formale della scrittura.

Scopo della ricerca è inoltre quello di monitorare come tali cambiamenti si ver-
ifichino non solo nell’arco temporale preso in esame, ma anche rispetto ad alcune
caratteristiche descrittive del campione di studenti esaminato. Per questo motivo è stato
messo a punto un questionario somministrato in classe dai docenti agli studenti e com-
posto da circa trenta domande corrispondenti ad altrettante variabili di sfondo consid-
erate. Le domande contenute riguardano diversi aspetti che vanno dall’inquadramento
anagrafico degli studenti, la caratterizzazione socio–culturale della famiglia (profes-
sione dei genitori, titolo di studio, libri in casa ecc...) e la rilevazione delle loro abitudini
(ad esempio, tempo dedicato alla lettura e alla scrittura, tempo dedicato ad ascoltare
musica, ecc...), per arrivare a domande che vanno a indagare le idee, le credenze e i
convincimenti degli studenti a proposito della scrittura e il loro rapporto con la scrittura
scolastica.

Allo scopo di monitorare i cambiamenti abbiamo preso in esame un corpus di
240 prove scritte da 156 studenti di sette diverse scuole secondarie di primo grado
di Roma; la scelta delle scuole è avvenuta basandosi sul presupposto che esista una
forte relazione tra l’area territoriale in cui è collocata la scuola e l’ambiente socio–
culturale di riferimento. Sono state individuate due aree territoriali: il centro storico
e la periferia, selezionati come rappresentativi rispettivamente di un ambiente socio–
culturale medio–alto e medio–basso. In ogni scuola è stata individuata una classe e,
benché le scuole di periferia siano quattro mentre quelle del centro siano tre, il numero
degli studenti è quasi equivalente (77 in centro e 79 in periferia) dal momento che le
classi delle scuole del centro sono più numerose.

Per ogni studente, sono state raccolte due tipologie di produzioni scritte: le tracce
assegnate dai docenti nei due anni scolastici e due prove comuni relative alla percezione
dell’insegnamento della scrittura, svolte dalle classi al termine del primo e del secondo
anno. Alla fine del secondo anno è stata somministrata la traccia della Prova 9 della
Ricerca IEA–IPS (Lucisano 1984; Corda Costa e Visalberghi 1995) che consiste in una
lettera di consigli indirizzata a un coetaneo su come scrivere un tema3, mentre per la
prova dell’anno precedente ne è stata utilizzata una forma adattata alla classe e all’età4.

In questo studio ci siamo focalizzati sull’analisi di una porzione dell’intero cor-
pus raccolto. Si tratta della collezione di prove comuni di scrittura somministrate nel
primo e secondo anno, composta da 109 testi. La scelta di prendere in esame questa
sottoporzione ci ha permesso di mostrare come i cambiamenti che avevamo supposto
esistere sia nel modo in cui gli studenti si approcciano alla scrittura sia nel modo stesso
in cui essi scrivono possano essere verificati utilizzando sia strumenti di annotazione
linguistica automatica del testo sia di estrazione automatica della conoscenza. Mentre
i primi infatti, come vedremo, permettono di monitorare le variazioni di ‘forma lin-
guistica’ nella pratica della scrittura, i secondi consentono di analizzare anche come

3 La traccia somministrata al termine del secondo anno è la seguente “Un ragazzo più giovane di te ha
deciso di iscriversi alla tua scuola. Ti ha scritto per chiederti come fare un tema che possa essere valutato
bene dai tuoi insegnanti. Mandagli una lettera cordiale nella quale descrivi almeno cinque punti che tu
pensi importanti per gli insegnanti quando valutano i temi”

4 La traccia somministrata al termine del primo anno “Un tuo amico sta per iniziare la quinta elementare
con le tue maestre e ti ha confessato di aver paura soprattutto dei lavori di scrittura che gli saranno
chiesti. Scrivigli una lettera raccontando la tua esperienza, gli aspetti positivi e anche le tue difficoltà nei
compiti di scrittura che hai fatto in quinta elementare. Raccontagli dei compiti che ti sono piaciuti di più e
di quelli che ti sono piaciuti di meno e anche dei suggerimenti che le maestre ti davano per insegnarti a
scrivere bene e di come correggevano i compiti scritti. Dagli consigli utili per cavarsela.”
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cambi che cosa gli studenti scrivono a proposito della pratica della scrittura (come muti
dunque il ‘contenuto’ dei temi).

3. Analisi linguistico–computazionale delle produzioni scritte degli studenti

Il corpus di 109 prove comuni oggetto di questo studio è stato analizzato impiegando
strumenti e metodologie di analisi automatica del testo che hanno permesso di accedere
sia alla ‘forma linguistica’ sia al ‘contenuto’ delle prove.

Il corpus di produzioni scritte, una volta digitalizzato, è stato prima di tutto arric-
chito automaticamente con annotazione morfo–sintattica e sintattica. A tal fine è stata
utilizzata una piattaforma consolidata e ampiamente sperimentata di metodi e stru-
menti per il trattamento automatico dell’italiano sviluppati congiuntamente dall’ILC–
CNR e dall’Università di Pisa5. Per quanto riguarda l’annotazione morfo–sintattica, lo
strumento utilizzato è descritto in (Dell’Orletta 2009); sul versante dell’analisi sintattica
a dipendenze, abbiamo utilizzato DeSR (Attardi et al. 2009). Entrambi sono in linea
con lo “stato dell’arte” per il trattamento automatico della lingua italiana, considerata
anche la loro qualificazione tra gli strumenti più precisi e affidabili per l’annotazione
morfo–sintattica e sintattica a dipendenze nella campagna di valutazione di strumenti
per l’analisi automatica dell’italiano, EVALITA6. Il testo linguisticamente annotato costi-
tuisce il punto di partenza per le analisi successive: i) l’identificazione dei contenuti più
salienti e ii) la definizione del profilo linguistico sottostante al testo a partire dal quale è
possibile ricostruire un quadro delle competenze linguistiche di chi lo ha prodotto.

3.1 L’identificazione dei contenuti

Il corpus di produzioni scritte è stato sottoposto ad un processo di estrazione termino-
logica finalizzato all’identificazione e all’estrazione delle unità lessicali monorematiche
e polirematiche rappresentative del contenuto. L’ipotesi di partenza è che i termini
costituiscono l’istanza linguistica dei concetti più salienti di una collezione documentale
e che per questo motivo il compito di estrazione terminologica costituisce il primo
e fondamentale passo verso l’accesso al suo contenuto. A tal fine è stato utilizzato
T2K2 (Text–to–Knowledge)7, una piattaforma web che trasforma le conoscenze implici-
tamente codificate all’interno di un corpus di testi in conoscenza esplicitamente strut-
turata (Dell’Orletta et al. 2014). Il componente di estrazione terminologica all’interno
di T2K2 opera in due fasi: la prima volta all’identificazione all’interno del corpus
di acquisizione di unità terminologiche rilevanti per il contesto indagato, la seconda
finalizzata alla validazione della salienza dei termini estratti nella fase precedente.

Per quanto riguarda la prima fase, il processo estrattivo opera sul testo annotato a
livello morfo–sintattico e lemmatizzato. Mentre l’acquisizione di unità monorematiche
avviene sulla base della loro frequenza, l’acquisizione delle unità polirematiche si
articola in due passaggi: il primo finalizzato all’identificazione dei potenziali termini
sulla base di una mini–grammatica operante sul testo annotato morfo–sintatticamente
e deputata al riconoscimento di sequenze di categorie grammaticali corrispondenti a
potenziali unità polirematiche; il secondo basato sul metodo denominato C/NC–value
(Frantzi et al. 2000), che appartiene alla classe delle misure di rilevanza rispetto al

5 http://linguistic-annotation-tool.italianlp.it/
6 http://www.evalita.it/
7 http://www.italianlp.it/demo/t2k-text-to-knowledge/
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dominio (o “termhood”) e che rappresenta ancora oggi uno standard de facto nel settore
dell’estrazione terminologica (Vu et al. 2008).

Le unità monorematiche e polirematiche estratte durante la prima fase vengono
successivamente filtrate sulla base di una funzione, chiamata “funzione di contrasto”,
che valuta dal punto di vista quantitativo quanto un termine della lista estratta al
passo precedente sia specifico della collezione di documenti analizzati. Per calcolare
la salienza del termine, viene confrontata la sua distribuzione sia nel corpus di acqui-
sizione sia in un corpus differente, detto “corpus di contrasto”. La funzione utilizzata,
chiamata “Contrastive Selection of multi–word terms” (CSmw), si è rivelata particolar-
mente adatta per l’analisi di variazioni distribuzionali di eventi a bassa frequenza (come
appunto l’occorrenza di un termine polirematico). Se per una descrizione dettagliata
del metodo si rinvia a (Bonin et al. 2010), vale la pena qui sottolineare come questa
fase di filtraggio contrastivo si sia rivelata particolarmente efficace per identificare i
concetti caratterizzanti le prove comuni del primo anno per contrasto rispetto ai concetti
caratterizzanti le prove del secondo anno, e viceversa.

3.2 La ricostruzione del profilo linguistico

Il secondo tipo di analisi a cui sono state sottoposte le produzioni scritte degli stu-
denti riguarda la struttura linguistica sottostante al testo. L’ipotesi di partenza è che
l’informazione che è possibile estrarre dall’analisi automatica della ‘forma linguistica’
del testo rappresenti un indicatore affidabile per monitorare l’evoluzione delle compe-
tenze e abilità linguistiche degli apprendenti.

A questo scopo è stato usato MONITOR–IT, lo strumento che, implementando la
strategia di monitoraggio descritta in (Montemagni 2013), analizza la distribuzione di
un’ampia gamma di caratteristiche linguistiche (di base, lessicali, morfo–sintattiche e
sintattiche) rintracciate automaticamente in un corpus a partire dall’output dei diversi
livelli di annotazione linguistica (Dell’Orletta et al. 2013a). I parametri sui quali si sono
concentrate le analisi spaziano tra i diversi livelli di descrizione linguistica e mirano
a catturare diversi aspetti della competenza linguistica di un apprendente, aspetti che
spaziano dalla competenza semantico–lessicale a quella sintattica. Nella tipologia di
parametri indagati, l’aspetto di maggiore novità riguarda quelli rintracciati a partire dal
testo annotato al livello sintattico. Come discusso in quanto segue, questo livello di anal-
isi, per quanto includa un inevitabile margine di errore, se appropriatamente esplorato
rende possibile l’indagine di aspetti della struttura linguistica altrimenti difficilmente
investigabili e quantificabili su larga scala.

L’utilizzo dell’annotazione linguistica prodotta in modo automatico come punto di
partenza del monitoraggio delle abilità di scrittura pone con forza la questione della
sua accuratezza. Si noti che l’accuratezza dell’annotazione automatica, inevitabilmente
decrescente attraverso i diversi livelli, è sempre più che accettabile da permettere la trac-
ciabilità nel testo di una vasta tipologia di tratti riguardanti diversi livelli di descrizione
linguistica, che possono essere sfruttati in compiti di monitoraggio linguistico. Come
dimostrato in (Montemagni 2013) per la lingua italiana e in (Dell’Orletta et al. 2013b) per
testi in lingua inglese di dominio bio–medico, il profilo linguistico ricostruito a partire
da corpora annotati automaticamente è in linea con quello definito a partire da corpora
la cui annotazione è stata validata manualmente. Questo risultato rende legittima la
scelta di operare all’interno di questo studio sul testo arricchito con annotazione lin-
guistica automatica, nonostante esso includa inevitabilmente un margine di errore che
varia a seconda del livello e del tipo di informazione linguistica considerata.
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La tipologia di parametri che abbiamo monitorato in questo studio è varia: la Tabella
1 riporta una selezione di quelli più significativi. A partire dall’annotazione morfo–
sintattica del testo è stato possibile calcolare come varia ad esempio la distribuzione
delle categorie morfo–sintattiche o di sequenze di categorie grammaticali e/o lemmi.
Mentre la struttura sintattica a dipendenze sottostante il testo rappresenta il punto di
partenza per arrivare a caratteristiche strutturali dell’albero sintattico, quali ad esempio
l’altezza massima dell’albero calcolata come la massima distanza (espressa come nu-
mero di relazioni attraversate) che intercorre tra una foglia (rappresentata da parole del
testo senza dipendenti) e la radice dell’albero, oppure la lunghezza delle relazioni di
dipendenza (calcolata come la distanza in parole tra la testa e il dipendente), oppure la
“valenza” media per testa verbale (calcolata come numero medio di dipendenti effetti-
vamente istanziati – sia argomenti che modificatori – governati dallo stesso verbo).

Tabella 1
Selezione delle caratteristiche linguistiche più salienti oggetto di monitoraggio linguistico.

Catteristiche di base
– Lunghezza media dei periodi e delle parole

Catteristiche lessicali
– Percentuale di lemmi appartenenti al Vocabolario di Base (VdB) del Grande dizionario italiano
dell’uso (De Mauro 2000)
– Distribuzione dei lemmi rispetto ai repertori di uso (Fondamentale, Alto uso, Alta disponi-
bilità)
– Type/Token Ratio (TTR) rispetto ai primi 100 e 200 tokens

Catteristiche morfo–sintattiche
– Distribuzione delle categorie morfo–sintattiche
– Densità lessicale calcolata come la proporzione delle parole semanticamente “piene”
(nomi, aggettivi, verbi e avverbi) rispetto al totale dei tokens
– Distribuzione dei verbi rispetto al modo, tempo e persona

Catteristiche sintattiche
– Distribuzione delle relazioni di dipendenza
– “Valenza” media per testa verbale
– Caratteristiche della struttura dell’albero sintattico (es. altezza media dell’albero sintattico,
lunghezza media delle relazioni di dipendenza)
– Uso della subordinazione (es. distribuzione di proposizioni principali vs. subordinate,
livelli di incassamento gerarchico di subordinate)
– Modificazione nominale (es. profondità media dei livelli di incassamento in strutture
nominali complesse)

4. Analisi del contenuto: primi risultati

La Tabella 2 riporta i primi 20 termini estratti in modo automatico da T2K2 a partire
dalle prove comuni del primo e del secondo anno, ordinati per rilevanza decrescente
sulla base della funzione statistica contrastiva che consente di definire un ordinamento
di rilevanza dei termini estratti da una collezione di documenti per contrasto rispetto ad
un corpus di riferimento (“corpus di contrasto”).

Rispetto a questa funzione, la rilevanza dei termini estratti dal corpus di prove del
primo anno è stata dunque definita sulla base del contrasto con il corpus di prove del
secondo anno e viceversa le prove del primo anno sono state utilizzate come “corpus
di contrasto” per calcolare la rilevanza di termini estratti dalle prove del secondo anno.
Come mostra la Tabella 2, tra i termini più salienti emersi dall’analisi delle prove del
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Tabella 2
I primi 20 termini estratti in modo automatico dal corpus delle prove comuni del I e II anno e
ordinati per salienza decrescente.

Prova I anno Prova II anno
compiti di scrittura errori di ortografia
maestra di italiano professoressa di italiano
lavori di scrittura uso di parole
compiti in classe tema in classe
errori di ortografia compiti in classe
paura dei compiti pertinenza alla traccia
compiti in classe d’italiano professoressa di lettere
anno di elementari tema
classe d’italiano voti al tema
compiti di italiano temi a piacere
maestra contenuto del tema
compiti per casa errori di distrazione
esperienze in quinta professoressa
maestra delle elementari frasi
maestra di matematica traccia
compiti a casa uso dei verbi
paura dei lavori consiglio
compiti parte destra del cervello
paura dei lavori di scrittura bava alla bocca
difficoltà nei compiti conoscenza dell’argomento

primo anno si segnalano ‘paura dei compiti, paura dei lavori di scrittura’ o anche ‘dif-
ficoltà nei compiti, esperienza in quinta’. Sono tutti termini che rivelano una tipologia
di consigli appartenente alla sfera psico–emotiva. Nel secondo anno, invece, i termini
più significativi estratti dal testo fanno riferimento a consigli che riguardano aspetti più
“tecnici” come ad esempio ‘uso di parole, pertinenza alla traccia, uso dei verbi’, ecc.

Come precedentemente introdotto, i contenuti delle prove comuni del primo e del
secondo sono stati analizzati allo scopo di monitorare il modo in cui evolve nei due
anni la percezione dell’insegnamento della scrittura attraverso appunto i consigli che
gli studenti stessi danno ai loro coetanei su come scrivere un buon tema. Per verificare
l’affidabilità della metodologia di estrazione dei contenuti abbiamo messo a confronto
i risultati di questo processo automatico con le valutazioni manuali delle prove. Tali
valutazioni sono state condotte da uno degli autori, esperto in pedagogia sperimentale,
che ha utilizzato la griglia predisposta dalla ricerca IEA (Fabi e Pavan De Gregorio
1988; Asquini 1993; Asquini et al. 1993). La griglia divide i consigli in sei macro–aree:
Contenuto, Organizzazione, Stile e registro, Presentazione, Procedimento e Tattica (vedi
Tabella 3)8. Inoltre, durante questa fase, sono stati individuati all’interno di ciascun tema
i periodi che contenevano dei consigli e ad ogni consiglio è stato attribuito un codice
identificativo a tre cifre con la rispettiva percentuale di occorrenza (vedi Tabella 4).

Analizzando i risultati della codifica manuale, possiamo notare come nel primo
anno la maggior parte dei consigli dati riflettano la didattica della scuola primaria e

8 Ogni area ha ulteriori articolazioni interne che identificano il consiglio in maniera sempre più puntuale:
ad esempio l’area Contenuto comprende ‘aspetti generali, informazione’, ecc, l’area Organizzazione
comprende ‘introduzione, corpo del testo, conclusione’, ecc., l’area Stile e registro comprende
‘uniformità, chiarezza, scelte lessicali e sintattiche’, ecc. e così via.
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Tabella 3
Risultati della codifica manuale del contenuto delle prove comuni nel I e II anno rispetto alle sei
macroaree IEA.

Area I anno II anno
Contenuto 5,3% 23,0%
Organizzazione 1,7% 5,2%
Stile e registro 5,3% 18,4%
Presentazione 9,0% 31,3%
Procedimento 36,9% 17,2%
Tattica 41,8% 5,0%

pertengono alla macro–area della Tattica (41,8%) e del Procedimento (36,9%) focaliz-
zandosi sulla sfera del comportamento e della realtà psico–emotiva. Come si può notare
nella Tabella 4, a queste macro–aree corrispondono consigli che riguardano esclusiva-
mente l’aspetto psico–emotivo e il comportamento (es. ‘Aspetta un po’, rifletti prima
di scrivere’, ‘Leggi/scrivi molto’, ‘Non avere paura’). Si tratta appunto di consigli “più
emotivi” che trovano un corrispettivo nei termini estratti automaticamente quali ‘paura
dei compiti, paura dei lavori di scrittura, difficoltà nei compiti, esperienza in quinta’,
ecc. Al contrario, nel secondo anno i consigli più frequenti sono quelli di Contenuto
(23%) e Presentazione (31,3%): gli studenti tendono a mettere l’attenzione su aspetti
più tecnico–linguistici, riflettendo il cambio della didattica della scuola secondaria di
primo grado rispetto a quella della scuola primaria. Nelle prove del secondo anno
infatti tra i dieci consigli più frequenti (es. ‘Scrivi con calligrafia ordinata’, ‘Usa una
corretta ortografia’, ‘Attieniti all’argomento; solo i punti pertinenti’) non compare nes-
sun consiglio riconducibile all’area della Tattica (vedi Tabella 4). Anche in questo caso
i consigli corrispondono a termini estratti automaticamente quali ad esempio ‘uso di
parole, pertinenza alla traccia, uso dei verbi, conoscenza dell’argomento, contenuto del
tema’, ecc.

Questo confronto tra i risultati della fase di estrazione automatica e la fase di
annotazione manuale dei consigli di scrittura dati apre nuovi scenari di ricerca. Le
prime evidenze raccolte in questo esperimento preliminare suggeriscono infatti come le
tecnologie di estrazione automatica del contenuto possano essere usate come supporto
di studi finalizzati a definire metodologie di valutazione dell’effettiva pratica didattica,
a indagare cioè come gli insegnanti insegnano a scrivere a partire dal modo in cui gli
studenti percepiscono l’insegnamento della scrittura.

5. Analisi della struttura linguistica: primi risultati

L’analisi comparativa tra le caratteristiche linguistiche rintracciate nel corpus di prove
comuni degli studenti del primo e secondo anno è stata condotta allo scopo i) di ri-
costruire le loro abilità di scrittura e ii) di monitorarne l’evoluzione rispetto alla variabile
temporale e alle variabili di sfondo raccolte grazie al questionario somministrato nelle
scuole.

Sono state pertanto condotte una serie di esplorazioni statistiche rispetto alle dis-
tribuzioni nelle prove delle caratteristiche linguistiche estratte a partire dal testo linguis-
ticamente annotato in modo automatico. A questo scopo, è stato utilizzato il test T per
campioni accoppiati del programma SPSS v.22 che restituisce per ogni variabile media,
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Tabella 4
Alcuni dei consigli più frequenti nelle prove comuni del I e II anno sulla base della griglia IEA.

Consigli con maggior frequenza
Prova I anno Prova II anno

Cod. Consiglio % Cod. Consiglio %
546 Aspetta un po’, rifletti prima

di scrivere
11,5 411 Scrivi con calligrafia ordinata 6,4

628 Leggi/scrivi molto 10,6 441 Usa una corretta ortografia 5,3
626 Lavora sodo, fai vedere che ti

impegni
10,4 111 Attieniti all’argomento; solo i

punti pertinenti
5,3

549 Non avere paura 7,1 443 Usa una corretta pun-
teggiatura

3,3

548 Concentrati, resta concen-
trato

6,2 433 Usa correttamente i verbi
(modi e tempi)

3,0

636 Segui sempre i consigli
dell’insegnante

4,1 121 Cerca di essere origi-
nale/creativo/pieno di
immaginazione

2,9

632 Non metterti a discutere con
l’insegnante

3,2 351 Usa un vocabolario ricco ed
espressivo

2,9

434 Usa correttamente pronomi,
verbi, congiunzioni

3,0 355 Usa una terminolo-
gia/registro appropriata/o
all’argomento

2,6

610 Abbigliamento e aspetto
fisico in generale

2,0 440 Ortografia aspetti generali 2,6

622 Non bisbigliare e non fare
chiasso

2,0 100 Aspetti di contenuto non
specificati

2,2

dimensioni del campione, deviazione standard e errore standard della media e per ogni
coppia di variabili correlazione, differenza media nelle medie, test T, e intervallo di
confidenza per la differenza nella media, deviazione standard e deviazione standard
della differenza media. Con il test T è possibile dunque verificare se le misure rilevate
nelle prove del secondo anno presentino un miglioramento, un peggioramento o se le
misure medie siano rimaste sostanzialmente uguali rispetto a quelle del primo anno.
Mediante la correlazione verifichiamo se le variazioni rispettano o meno le differenze di
partenza tra i soggetti esaminati e dunque se gli eventuali miglioramenti rappresentino
uno sviluppo coerente con le condizioni di partenza degli studenti o se sia intervenuto
qualche elemento di cambiamento che ha stimolato cambiamenti significativi.

5.1 Caratteristiche di base e morfo–sintattiche

Partendo dall’analisi delle variabili linguistiche di base riportate nella Tabella 5, possi-
amo notare che la lunghezza del testo, misurata in termini di numero totale di token, e la
lunghezza media dei periodi, misurata in termini di token per periodo, variano in modo
statisticamente significativo nel passaggio dal primo al secondo anno scolastico. Mentre
nel primo anno gli studenti scrivono prove più lunghe e con periodi mediamente più
lunghi, nel secondo anno le prove sono più brevi e contengono periodi mediamente più
corti. Questi risultati potrebbero sembrare una prima spia di una inaspettata maggiore
complessità delle prove del primo anno rispetto a quelle del secondo. La lunghezza
del testo e dei periodi è infatti un elemento tipicamente associato ad una maggiore
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complessità linguistica. In questo caso tuttavia due sono i fattori che hanno influenza su
questo e altri risultati discussi in quanto segue.

Tabella 5
Caratteristiche di base e morfo–sintattiche e significatività della variazione tra I e II anno.

Caratteristiche I anno II anno Significatività
Lunghezza media delle prove (in token) 275,23 239,21 0,00
Lunghezza media dei periodi (in token) 24,02 20,97 0,01
Distribuzione di:
– punteggiatura 9,70% 10,60% 0,00
– segni di punteggiatura “debole” 0,49% 1,11% 0,00
– congiunzioni 6,90% 5,92% 0,00
– congiunzioni subordinanti 2,78% 2,43% 0,01
– sostantivi 18,16% 19,73% 0,00
– preposizioni articolate 2,74% 3,47% 0,00
– determinanti dimostrativi 0,33% 0,47% 0,00
– pronomi 10,39% 7,72% 0,00
– pronomi personali 1,64% 0,76% 0,00
– pronomi clitici 5,78% 3,99% 0,00

Da un lato la maggiore lunghezza del testo e dei periodi nelle prove del primo anno
è sicuramente influenzata dal tipo di traccia assegnata: la traccia distribuita il primo
anno prevedeva che gli studenti scrivessero di più, non soltanto dando dei consigli
su come scrivere un buon tema (come richiesto anche dalla traccia del secondo anno),
ma descrivendo anche le difficoltà di scrittura incontrate, i tipi di compiti che erano
piaciuti di più, il modo in cui le maestre correggevano i temi, ecc... Ad influire è però
d’altro canto il fatto che le prove del secondo anno sono scritte da studenti che hanno
presumibilmente migliorato le proprie abilità di scrittura. Il prevedibile miglioramento
nel passaggio dal primo al secondo anno di scuola implica che i temi del secondo
anno siano scritti in modo più “canonico” a cominciare dall’ordinamento del testo in
periodi delimitati da un segno di punteggiatura di fine periodo, elemento che permette
agli strumenti di annotazione linguistica automatica di individuare l’unità di analisi
di un testo scritto (il periodo appunto). Come si può infatti notare nella Tabella 5, nel
passaggio dal primo al secondo anno i segni di punteggiatura in generale aumentano.
Oltre ai punti di fine periodo sono i segni di punteggiatura “debole” che separano pa-
role e/o proposizioni all’interno del periodo9 ad aumentare in maniera statisticamente
significativa, a testimonianza di una maggiore abilità di organizzazione interna del
contenuto. Un testo più “canonico” è dunque un testo che gli strumenti di annotazione
linguistica analizzano con una maggiore precisione di analisi perché caratterizzato
da tratti linguistici più simili a quelli dei testi sui quali sono stati addestrati. Come
discusso in quanto segue, tale precisione influisce anche sulle caratteristiche sintattiche
monitorate.

Caratteristica legata alla variazione di lunghezza del periodo è anche la dimin-
uzione nell’uso delle congiunzioni nel passaggio dal primo al secondo anno. Esiste in-
fatti una correlazione statisticamente significativa tra la diminuzione della distribuzione
percentuale delle congiunzioni e la lunghezza media dei periodi: a diminuire nelle
prove del secondo anno sono soprattutto le congiunzioni subordinanti. Sebbene ciò

9 Sulla base dello schema di annotazione adottato in questo studio si tratta di punto e virgola e due punti.
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possa essere considerato a prima vista spia di una diminuzione della complessità
sintattica del testo, tradizionalmente associata ad un maggior andamento ipotattico
(Beaman 1984; Givón 1991), tuttavia tale variazione può essere interpretata anche in
questo caso come indice di un ordinamento più lineare del contenuto (Mortara Garavelli
2003). Ad aumentare in maniera statisticamente significativa sono invece i sostantivi, le
preposizioni articolate e i determinanti dimostrativi a parziale testimonianza di come i
temi diventino nel secondo anno più informativi e strutturati (Biber 1993).

Un’altra caratteristica morfo–sintattica che testimonia l’evoluzione verso una forma
di scrittura più “canonica” è la diminuzione dei pronomi in generale e dei pronomi
personali e clitici in particolare. Soprattutto nel caso dei pronomi personali ciò è spia di
una maggiore abilità d’uso della possibilità propria della lingua italiana di omettere
il pronome personale. Questo risultato, l’aumento della punteggiatura in funzione
segmentatrice–sintattica e, vedremo, la diversa distribuzione di alcune caratteristiche
sintattiche sono tutti elementi che possiamo ipotizzare siano spia del fatto che nei temi
del secondo anno gli studenti abbandonano un modo di espressione che, pur scritta,
ha più le caratteristiche del parlato e acquisiscono invece nuove abilità linguistiche di
scrittura.

Anche rispetto alla variazione delle competenze d’uso dei verbi i risultati riportati
nella Tabella 6 forniscono indicazioni degne di nota. Sebbene la semplice distribuzione
percentuale dei verbi non sia statisticamente significativa, risulta invece discriminante
nel passaggio dal primo al secondo anno l’uso maggiore dei verbi modali e dei verbi di
modo condizionale e gerundio. Se da un lato gli studenti nelle prove del secondo anno
usano modi verbali tipicamente inseriti in strutture verbali complesse (quali appunto
il condizionale e il gerundio), dall’altro sembrano ridurre progressivamente un modo
verbale più semplice come l’indicativo. Le variazioni d’uso dei tempi verbali sono
invece da ricondurre più che altro al diverso tipo di traccia nei due anni considerati.
La diminuzione di verbi all’imperfetto e al passato nel passaggio dal primo al secondo
anno, da un lato, e l’aumento di verbi al tempo presente, dall’altro, sono senza dubbio ri-
conducibili al fatto che la traccia del primo anno richiedeva di descrivere la propria pas-
sata esperienza scolastica in quinta elementare, mentre in base alla traccia del secondo
anno gli studenti dovevano descrivere la loro attuale esperienza nella scuola secondaria
di primo grado. Inoltre, la diminuzione dell’uso degli ausiliari potrebbe essere legata a
questa variazione d’uso dei tempi, sebbene tale dato sia sovrastimato poiché lo schema
di annotazione linguistica qui adottato non ci permette al momento di distinguere i
tempi composti dalle forme passive. Va tuttavia fatto notare come alcune di queste
variazioni d’uso dei tempi verbali possano anche essere ascrivibili per alcuni aspetti alle
caratteristiche che distinguono la lingua scritta da quella parlata. È il caso ad esempio
della diminuzione di verbi all’imperfetto. Sebbene infatti essi diminuiscano nel secondo
anno in seguito alla diversa traccia, è pur vero che l’uso estensivo dell’imperfetto è una
delle caratteristiche distintive del parlato (Masini 2003). Queste diverse distribuzioni
possono essere dunque considerate un’ulteriore spia della progressiva riduzione di
forme tipiche della lingua parlata verso l’acquisizione di maggiori abilità di scrittura.

5.2 Caratteristiche sintattiche e lessicali

La diversa distribuzione di alcune delle caratteristiche linguistiche rintracciabili a par-
tire dal livello di annotazione sintattica automatica farebbe inizialmente pensare ad una
minore complessità delle prove nel secondo anno. Tuttavia, come discusso preceden-
temente, il dato va letto alla luce della tendenza, nel passaggio dal primo al secondo
anno scolastico, verso una forma di scrittura più “canonica”. Va in questa direzione
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Tabella 6
Distribuzione di tempi e modi verbali e significatività della variazione tra I e II anno.

Caratteristiche I anno II anno Significatività
Distribuzione di verbi:
– ausiliari 1,88% 0,98% 0,00
– modali 1,09% 1,81% 0,00
– di modo condizionale 0,14% 0,64% 0,00
– di modo gerundio 1,68% 2,21% 0,00
– di modo indicativo 53,76% 41,86% 0,00
– al tempo imperfetto 31,78% 1,10% 0,00
– al tempo passato 2,21% 0,75% 0,00
– al tempo presente 56,06% 85,78% 0,00

ad esempio l’aumento dei complementi oggetto in posizione post–verbale e della con-
seguente diminuzione di quelli in posizione pre–verbale: nelle prove del secondo anno
gli studenti dimostrano di aver acquisito una maggiore propensione per un ordine
canonico dei costituenti nella lingua scritta. La diversa distribuzione fa inoltre ipotizzare
un uso ridotto da parte degli studenti della dislocazione a sinistra del tema (dunque del
complemento oggetto in posizione pre–verbale), caratteristica tipica del parlato.

Tabella 7
Caratteristiche sintattiche e significatività della variazione tra I e II anno.

Caratteristiche I anno II anno Significatività
Distribuzione di relazioni di dipendenza sintattica di
tipo:
– complement 8,00% 7,71% 0,00
– modifier 16,60% 17,84% 0,00
– subject 5,85% 5,00% 0,00
– subordinate clause 2,80% 2,41% 0,00
Lunghezza media delle più lunghe relazioni di dipen-
denza sintattica

9,22 7,80 0,02

Media di proposizioni per periodo 4,00 3,36 0,01
Media di token per proposizione 6,17 6,42 0,02
Distribuzione dei complementi oggetto:
– post–verbali 80,93% 86,66% 0,00
– pre–verbali 18,31% 13,34% 0,00

Alcuni dei tratti osservati riflettono inoltre quanto avevamo osservato a proposito
della lunghezza della frase. Il fatto che le prove del secondo anno abbiamo periodi me-
diamente più corti di quelli del primo anno influisce ad esempio sul fatto che i periodi
del secondo anno contengano relazioni di dipendenza sintattica più corte rispetto alle
relazioni di dipendenza delle prove del primo anno10. Sebbene dunque tale parametro
sia tradizionalmente associato ad una maggiore complessità sintattica (Hudson 1995), la
presenza di relazioni di dipendenza mediamente più corte nelle prove del secondo anno
potrebbe essere conseguenza di una strutturazione interna del periodo più canonica. I

10 La lunghezza delle relazioni di dipendenza sintattica è qui calcolata come la distanza tra la testa e il
dipendente (in tokens).
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risultati del monitoraggio di questo parametro sintattico ci restituirebbero prove del
secondo anno caratterizzate da periodi più corti, più strutturati e con dipendenze
sintattiche più corte.

Sulla variazione di questo parametro linguistico potrebbe inoltre influire, come già
discusso, una maggiore precisione dell’annotazione sintattica automatica delle prove
del secondo anno. È noto che periodi molto lunghi, tipicamente caratterizzati da lunghe
relazioni di dipendenza sintattica, richiedono un maggiore costo di elaborazione umana
e computazionale (Miller 1956; Hudson 1995). Nel trattamento di periodi lunghi si gen-
erano ambiguità di analisi che si ripercuotono negativamente sulla precisione del pro-
cesso di annotazione automatica. Sono in particolare dipendenze sintattiche lunghe a
influire in modo negativo sui risultati dell’analisi (McDonald e Nivre 2007). Periodi più
brevi contengono inoltre meno relazioni di dipendenza sintattica di tipo: complemento
preposizionale, sia esso modificatore o argomento e designato come comp(lement)11

nello schema di annotazione a dipendenze adottato12; oppure, mod(ifier)13, tipicamente
espressione di modificazione nominale o frasale. Entrambi costituiscono luoghi di mag-
giore ambiguità di annotazione linguistica automatica (McDonald e Nivre 2007). I risul-
tati del monitoraggio automatico della lunghezza e dei tipi di relazioni di dipendenza
sintattica vanno pertanto letti alla luce di queste considerazioni sulla precisione degli
strumenti di annotazione linguistica automatica.

È inoltre interessante osservare che i periodi più corti contenuti nelle prove del
secondo anno, con in media meno proposizioni per periodo14 (Media di proposizioni
per periodo nella Tabella 7), contengono proposizioni più lunghe (in termini di token)15

(Media di token per proposizione). Questo ci fornisce ulteriore conferma di come le prove
del secondo anno, sebbene più brevi, siano caratterizzate da una organizzazione del
contenuto in strutture sintattiche più articolate, cioè in proposizioni più lunghe.

Inoltre, alcune delle caratteristiche sono riconducibili ad alcune delle caratteris-
tiche di base del testo e morfo–sintattiche osservate prima. È il caso ad esempio della
distribuzione delle relazioni di dipendenza sintattica che marcano la presenza di una
proposizione subordinata, cioè sub(ordinate clause)16, la cui diminuzione trova il cor-
rispettivo nella diminuzione di congiunzioni subordinanti.

Dall’indagine sulla variazione della distribuzione del lessico emerge che gli stu-
denti nel passaggio dal primo al secondo anno apprendono nuove parole diminuendo
l’uso di parole che appartengono al Vocabolario di Base (De Mauro 2000), mentre non
risulta statisticamente significativa la variazione distribuzionale delle parole rispetto
ai tre repertori d’uso (Fondamentale, Alto Uso e Alta Disponibilità). Inoltre, le prove
del secondo anno risultano lessicalmente più ricche di quelle del primo anno essendo

11 comp si riferisce alla relazione tra una testa e un complemento preposizionale. Questa relazione
funzionale sottospecificata è particolarmente utile in quei casi in cui è difficile stabilire la natura
argomentale o di modificatore del complemento; esempio: Fu assassinata da un pazzo.

12 http://www.italianlp.it/docs/ISST-TANL-DEPtagset.pdf
13 mod designa la relazione tra una testa e il suo modificatore; tale relazione copre modificatori di tipo

frasale, aggettivale avverbiale e nominale; esempio: Colori intensi; Per arrivare in tempo, sono partito molto
presto.

14 In base allo schema di annotazione adottato in questo studio, la media di proposizioni per periodo è stata
calcolata come la media di teste verbali (cioè di verbi testa sintattica da cui dipende un token o un
sotto–albero sintattico) sul totale di periodi presenti nel testo.

15 La lunghezza della proposizione è stata calcolata come il rapporto tra il numero totale di token della
prova e il numero totale di teste verbali della prova.

16 sub è la relazione tra una congiunzione subordinante e la testa verbale di una proposizione subordinata;
esempio: Ha detto che non intendeva fare nulla.
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caratterizzate da un valore di Type/Token ratio17 maggiore. Questo testimonia una
crescita nel tempo delle competenze semantico–lessicali degli studenti.

Tabella 8
Caratteristiche lessicali e significatività della variazione tra I e II anno.

Caratteristiche I anno II anno Significatività
Lemmi appartenenti al Vocabolario di Base 83,19% 79,16% 0,00
Distribuzione dei lemmi rispetto ai repertori d’uso:
Fondamentale 84,37% 83,99% 0,39
Alto Uso 10,84% 10,95% 0,96
Alta Disponibilità 4,79% 5,06 0,20
Type/token ratio (100 lemmi) 0,66 0,69 0,00
Type/token ratio (200 lemmi) 0,55 0,58 0,00

5.3 Le caratteristiche linguistiche rispetto alle variabili di sfondo

L’analisi della variazione delle caratteristiche linguistiche rispetto alle variabili di
sfondo considerate ha permesso di iniziare a tratteggiare come il composito back-
ground personale di ogni studente influisca sull’evoluzione delle sue abilità linguis-
tiche. Sebbene solo uno studio, tutt’ora in corso, sull’intero corpus di produzioni scritte
raccolto potrà disegnare l’intero scenario, tuttavia i risultati riportati in questo contrib-
uto – per quanto parziali – permettono di trarre alcune preliminari considerazioni.

Ne è emerso, ad esempio, come il lavoro della madre influisca in maniera statisti-
camente significativa sulla variazione della lunghezza del testo e sul lessico usato nelle
prove scritte. Come mostra la Tabella 9, nel primo anno scrive prove più lunghe chi
ha la madre che svolge professioni classificate di “Alta professionalità”, mentre nel
secondo anno le prove più lunghe sono scritte da chi ha la madre che svolge profes-
sioni di “Media professionalità”. Solo per quanto riguarda le prove del primo anno, è
risultato significativo il fatto che gli studenti la cui madre svolge professioni di “Alta
professionalità” utilizzano una percentuale maggiore di lessico di Alta Disponibilità.

Tabella 9
Variazione di caratteristiche linguistiche rispetto al lavoro della madre.

Numero di Numero di Lessico ad Alta
token (I anno) token (II anno) disponibilità (I anno)

Operai e artigiani 313,95 252,76 4,34%
Media professionalità 316,25 284,08 4,55%
Alta professionalità 239,67 202,54 5,30%
Significatività 0,00 0,01 0,03

17 Misura ampiamente utilizzata in statistica lessicale, la Type/Token ratio consiste nel calcolare il rapporto
tra il numero di parole tipo in un testo, il ‘vocabolario’ di un testo (Vc), e il numero delle occorrenza delle
unità del vocabolario nel testo (C). I valori di TTR oscillando tra 0 e 1 indicano se il vocabolario di un
testo è poco vario (valori vicini a 0) o molto vario (valori vicini a 1). Considerata la lunghezza media delle
prove analizzate (275 tokens le prove del primo anno e 239 tokens quelle del secondo), abbiamo scelto di
calcolare la TTR rispetto ai primi 100 e 200 tokens del testo.
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Sulla variazione di lunghezza della prova sembrano influire tre variabili di sfondo
legate alle abitudini personali degli studenti (vedi Tabella 10). Esiste una correlazione
statisticamente significativa tra chi dedica più tempo alla lettura di libri e la lunghezza
delle prove scritte nel secondo anno: chi legge di più scrive di più. Al contrario, chi
dedica più tempo a giocare a videogiochi on–line e a guardare film scrive prove più
brevi.

Tabella 10
Variabili di sfondo che influiscono significativamente sulla lunghezza media della prova in
token.

Tempo dedicato Tempo dedicato a Tempo dedicato a guardare
a leggere giocare a videogiochi film in TV, al cinema

libri on–line o su DVD
no token II no token I no token II no token I

Per niente 122,50 325,62 254,73 –
Poco 243,55 305,97 284,08 408,40
Abbastanza 235,53 270,81 223,68 300,19
Molto 289,83 207,39 184,86 246,75
Significatività 0,01 0,00 0,01 0,00

È interessante infine far osservare come la variabile territoriale influisca sulla vari-
azioni di alcune delle caratteristiche morfo–sintattiche e sintattiche prese in esame.
Esiste infatti una correlazione statisticamente significativa tra l’area urbana della scuola
e la distribuzione delle congiunzioni, dei sostantivi e delle preposizioni articolate nelle
prove del primo e del secondo anno, nonché dei pronomi personali nelle prove del
secondo anno. Gli studenti delle scuole di periferia scrivono usando più congiunzioni
e sostantivi (in entrambi gli anni scolastici), meno pronomi personali (variazione sig-
nificativa solo nelle prove del secondo anno) e nelle prove del primo anno tendono
a preferire il complemento oggetto in posizione post–verbale. Analizzati alla luce dei
risultati di monitoraggio ottenuti per i due interi anni, questi dati ci permettono di
convalidare l’ipotesi iniziale che la collocazione geografica sia fortemente correlata
all’evoluzione delle abilità di scrittura degli studenti.

Tabella 11
Variazione nel primo (I) e secondo (II) anno della distribuzione di alcune caratteristiche
morfo–sintattiche e sintattiche rispetto all’area urbana.

Area Congiunzioni Sostantivi Preposizioni Pronomi Complementi
urbana articolate personali oggetto

pre–verbali
I II I II I II II I

Centro 6,57 5,78 17,52 18,58 2,85 3,35 0,81 82,75
Periferia 7,28 5,96 18,71 21,01 2,61 3,51 0,74 78,49
Significatività 0,03 0,00 0,02 0,02 0,00 0,00 0,04 0,00
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6. Conclusione e sviluppi futuri

Ad oggi, in Italia non si è ancora affermata un’efficace integrazione delle tecnologie
informatiche nei processi di insegnamento e apprendimento nella scuola: quali siano
le potenzialità insite nelle nuove tecnologie rimane un interrogativo aperto. In questo
panorama, le tecnologie del linguaggio presentano un forte potenziale innovativo
sia dal punto di vista dell’accesso al contenuto testuale sia della valutazione delle
strutture linguistiche sottostanti al testo. In questo contributo, abbiamo mostrato in
particolare come tali tecnologie possano fornire un valido supporto nel monitoraggio
dell’evoluzione della competenza linguistica degli apprendenti.

I risultati ottenuti dall’analisi di un corpus di produzioni scritte nei primi due anni
della scuola secondaria di primo grado condotta con strumenti di annotazione linguis-
tica automatica ed estrazione automatica della conoscenza hanno dimostrato come le
tecnologie del linguaggio siano oggi mature per monitorare l’evoluzione delle abilità
di scrittura. Sebbene ancora preliminari rispetto al più ampio contesto della ricerca in
cui si colloca il lavoro descritto in questo articolo, crediamo infatti che le osservazioni
che è stato possibile qui proporre mostrino chiaramente le potenzialità dell’incontro tra
linguistica computazionale ed educativa, aprendo nuove prospettive di ricerca.

Tra le linee di attività aperte da questo primo lavoro vi è l’utilizzo dell’intero corpus
di produzioni scritte raccolto per lo studio e la creazione di modelli di sviluppo delle
abilità di scrittura. A questo scopo, tale risorsa è stata arricchita con l’annotazione
manuale di diverse tipologie di errori commessi dagli studenti e con la loro relativa
correzione e stiamo al momento analizzando come questa ulteriore informazione con-
tribuisca a definire il modo in cui le competenze linguistiche degli studenti mutino ed
evolvano nel corso dei due anni scolastici presi in esame (Barbagli et al. 2015). È inoltre
in corso la definizione di una metodologia che, sfruttando l’articolazione diacronica
della risorsa, permetta di studiare l’evoluzione individuale delle abilità linguistiche
di ogni singolo studente quantificando il ruolo svolto dall’evoluzione dei singoli tratti
linguistici monitorati in modo automatico (Richter et al. 2015).

Il corpus di produzioni scritte così arricchito con l’annotazione relative agli er-
rori commessi dagli studenti apre anche nuovi orizzonti di ricerca ad esempio nello
sviluppo di sistemi a supporto dell’insegnamento (Granger 2003) o in altri compiti
applicativi perseguiti all’interno della comunità di ricerca internazionale focalizzata
sull’uso delle tecnologie del linguaggio in ambito scolastico ed educativo, quali ad
esempio la valutazione automatica delle produzioni scritte (Attali and Burstein 2006) o
la correzione automatica degli errori (Ng et al. 2013, 2014). Ad oggi tali compiti vengono
per lo più realizzati per la lingua inglese e a partire da produzioni scritte di apprendenti
l’inglese come lingua straniera (L2). La risorsa messa a punto nell’ambito delle attività
qui descritte potrà costituire il punto di riferimento per la realizzazione di compiti simili
per la lingua italiana e a partire da produzioni scritte di apprendenti la lingua madre
(L1) in età scolare.

Bibliografia
Asquini, Giorgio, Giulio De Martino e Luigi Menna. 1993. Analisi della prova 9. In AA.VV,

editori, La produzione scritta nel biennio superiore. Ricerca nelle scuole superiori del Molise, IRRSAE
MOLISE, Campobasso, Lampo, pagine 77–100.

Asquini, Giorgio. 1993. Prova 9 lettera di consigli. In AA.VV, editori, La produzione scritta nel
biennio superiore. Ricerca nelle scuole superiori del Molise, IRRSAE MOLISE, Campobasso, Lampo,
pagine 67–75.

Attali, Yigal e Jill Burstein. 2006. Automated Essay Scoring with e–rater V.2. Journal of Technology,
Learning, and Assessment, 4(3):1–31.

121



Italian Journal of Computational Linguistics Volume 1, Number 1

Attardi, Giuseppe, Felice Dell’Orletta, Maria Simi e Joseph Turian. 2009. Accurate Dependency
Parsing with a Stacked Multilayer Perceptron. In Proceedings of Evalita’09 (Evaluation of NLP
and Speech Tools for Italian), pagine 1–8, Reggio Emilia (Italia).

Barbagli, Alessia, Pietro Lucisano, Felice Dell’Orletta, Simonetta Montemagni e Giulia Venturi.
2015. CItA: un Corpus di Produzioni Scritte di Apprendenti l’Italiano L1 Annotato con Errori.
In Proceedings of the 2nd Italian Conference on Computational Linguistics (CLiC-it), Trento, (Italia).

Beaman, Karen. 1984. Coordination and Subordination Revisited: Syntactic Complexity in
Spoken and Written Narrative Discorse. In Tannen D. e Freedle R., editori, Coherence in Spoken
and Written Discorse, Norwood, N.J., pagine 45–80.

Biber, Douglas. 1993. Using Register-diversified Corpora for General Language Studies.
Computational Linguistics Journal, 19(2):219–241.

Bonin, Francesca, Felice Dell’Orletta, Simonetta Montemagni e Giulia Venturi. 2010. A
Contrastive Approach to Multi–word Extraction from Domain–specific Corpora. In Proceedings
of the 7th International Conference on Language Resources and Evaluation (LREC 2010), pagine
3222–3229, Valletta (Malta).

Corbett, Albert T. e John R. Anderson. 1994. Knowledge tracing: Modeling the acquisition of
procedural knowledge. User modeling and user–adapted interaction, 4(4):253–278.

Corda Costa, Maria e Aldo Visalberghi. 1995. Misurare e valutare le competenze linguistiche. Guida
scientifico-pratica per gli insegnanti. Firenze, La Nuova Italia.

Deane, Paul e Thomas Quinlan. 2010. What automated analyses of corpora can tell us about
students’ writing skills. Journal of Writing Research, 2(2):151–177.

Dell’Orletta, Felice. 2009. Ensemble system for Part-of-Speech tagging. In Proceedings of Evalita’09
(Evaluation of NLP and Speech Tools for Italian), pagine 1–8, Reggio Emilia (Italia).

Dell’Orletta, Felice, Simonetta Montemagni, Eva M. Vecchi e Giulia Venturi. 2011. Tecnologie
linguistico-computazionali per il monitoraggio della competenza linguistica italiana degli
alunni stranieri nella scuola primaria e secondaria. In G.C. Bruno, I. Caruso, M. Sanna, I.
Vellecco, editori, Percorsi migranti: uomini, diritto, lavoro, linguaggi, Milano, McGraw-Hill,
pagine 319–336.

Dell’Orletta, Felice e Simonetta Montemagni. 2012. Tecnologie linguistico–computazionali per la
valutazione delle competenze linguistiche in ambito scolastico. In Atti del XLIV Congresso
Internazionale di Studi della Società di Linguistica Italiana (SLI 2010), pagine 343–359, Viterbo
(Italia).

Dell’Orletta, Felice, Simonetta Montemagni e Giulia Venturi. 2013a. Linguistic Profiling of Texts
Across Textual Genre and Readability Level. An Exploratory Study on Italian Fictional Prose.
In Proceedings of the Recent Advances in Natural Language Processing Conference (RANLP-2013),
pagine 189–197, Hissar (Bulgaria).

Dell’Orletta, Felice, Giulia Venturi e Simonetta Montemagni. 2013b. Unsupervised
Linguistically-Driven Reliable Dependency Parses Detection and Self-Training for Adaptation
to the Biomedical Domain. In Proceedings of the 2013 Workshop on Biomedical Natural Language
Processing (BIONLP-2013), pagine 45–53, Sofia (Bulgaria).

Dell’Orletta, Felice, Giulia Venturi, Andrea Cimino e Simonetta Montemagni. 2014. T2K: a
System for Automatically Extracting and Organizing Knowledge from Texts. In Proceedings of
9th Edition of International Conference on Language Resources and Evaluation (LREC 2014), pagine
2062–2070, Reykjavik (Islanda).

De Mauro, Tullio. 2000. Grande dizionario italiano dell’uso (GRADIT). Torino, UTET.
Ekanadham, Chaitanya e Yan Karklin. 2015. T-SKIRT: Online Estimation of Student Proficiency

in an Adaptive Learning System. In Proceedings of the 31st International Conference on Machine
Learning, pagine 1–6, Lille (Francia).

Fabi, Aldo e Gabriella Pavan De Gregorio. 1988. La prova 9: risultati di una ricerca sui contenuti
in una prova di consigli sulla scrittura. Ricerca educativa, 5:2–3.

Frantzi, Katerina, Sophia Ananiadou e Hideki Mima. 2000. Automatic recognition of multi-word
terms:. the C-value/NC-value method. International Journal on Digital Libraries, 3(2):115–130,
Springer–Verlag.

Givón, Thomas. 1991. Markedness in grammar: distributional, communicative and cognitive
correlates of syntactic structure. Studies in Language, 15(2):335–370.

Granger, Sylviane. 2003. Error-tagged Learner Corpora and CALL: A Promising Synergy.
CALICO Journal, 20:465–480.

Hudson, Richard A. 1995. Measuring syntactic difficulty. Manuscript, University College,
London disponibile alla pagina http://www.phon.ucl.ac.uk/home/dick/difficulty.htm

122



Barbagli et al. Monitoraggio dell’evoluzione delle abilità di scrittura

Lu, Xiaofei. 2007. Automatic measurement of syntactic complexity in child language acquisition.
International Journal of Corpus Linguistics, 14(1):3–28.

Lubetich, Shannon e Kenji Sagae. 2014. Data–Driven Measurement of Child Language
Development with Simple Syntactic Templates. In Proceedings of the 25th International
Conference on Computational Linguistics (COLING), pagine 2151–2160, Dublino (Irlanda).

Lucisano, Pietro. 1984. L’indagine IEA sulla produzione scritta. Ricerca educativa, 5:41–61.
Lucisano, Pietro. 1988. La ricerca IEA sulla produzione scritta. Ricerca educativa, 2:3–13.
Lucisano, Pietro e Guido Benvenuto. 1991. Insegnare a scrivere: dalla parte degli insegnanti.

Scuola e Città, 6:265–279.
Masini, Andrea. 2003. L’italiano contemporaneo e le sue varietá. In I. Bonomi, A. Masini, S.

Morgana e M. Piotti, editori, Elementi di Linguistica Italiana, Roma, Carocci, pagine 15–86.
McDonald, Ryan e Joakim Nivre. 2007. Characterizing the errors of data–driven dependency

parsing models. In Proceedings of the the EMNLP-CoNLL, pagine 122–131, Praga (Repubblica
Ceca).

Montemagni, Simonetta. 2013. Tecnologie linguistico–computazionali e monitoraggio della
lingua italiana. Studi Italiani di Linguistica Teorica e Applicata (SILTA), XLII(1):145–172.

Mortara Garavelli, Bice. 2003. Strutture testuali e stereotipi nel linguaggio forense. In P. Mariani
Biagini, editori, La lingua, la legge, la professione forense. Atti del convegno Accademia della Crusca
(Firenze, 31 gennaio-1 febbraio 2002), Milano, Giuffrè, pagine 3-19.

Miller, George A.. 1956. The magical number seven, plus or minus two: some limits on pur
capacity for processing information. Psycological Review, 63:81–97.

Ng, Hwee T., Siew M. Wu, Yuanbin Wu, Christian Hadiwinoto e Joel Tetreault. 2013. The
CoNLL-2013 Shared Task on Grammatical Error Correction. In Proceedings of the Seventeenth
Conference on Computational Natural Language Learning: Shared Task, pagine 1–12, Sofia
(Bulgaria).

Ng, Hwee T., Siew M. Wu, Ted Briscoe, Christian Hadiwinoto, Raymond H. Susanto e
Christopher Bryant. 2014. The CoNLL-2014 Shared Task on Grammatical Error Correction. In
Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task,
pagine 1–14, Baltimore (Maryland).

Petersen, Sarah E. e Mari Ostendorf. 2009. A machine learning approach to reading level
assessment. In Computer Speech and Language, 23:89–106.

Piech, Chris, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas
Guibas e Jascha Sohl-Dickstein. 2015. Deep Knowledge Tracing. ArXiv e-prints:1506.05908
2015, pagine 1–13.

Purvues, Alan C. 1992. The IEA Study of Written Composition II: Education and Performance in
Fourteen Countries vol 6. Oxford, Pergamon.

Richter, Stefan, Andrea Cimino, Felice Dell’Orletta e Giulia Venturi. 2015. Tracking the Evolution
of Language Competence: an NLP–based Approach. In Proceedings of the 2nd Italian Conference
on Computational Linguistics (CLiC-it), 2–3 December, Trento, Italy.

Rigo, Roberta. 2005. Didattica delle abilità linguistiche. Percorsi di progettazione e di formazione
insegnanti. Armando Editore

Roark, Brian, Margaret Mitchell e Kristy Hollingshead. 2007. Syntactic complexity measures for
detecting mild cognitive impairment. In Proceedings of the Workshop on BioNLP 2007: Biological,
Translational, and Clinical Language Processing, pagine 1–8, Praga (Repubblica Ceca).

Rouhizadeh, Masoud, Emily Prud’hommeaux, Brian Roark e Jan van Santen. 2013.
Distributional semantic models for the evaluation of disordered language. In Proceedings of the
2013 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pagine 709–714, Atlanta (Georgia, USA).

Sagae, Kenji, Alon Lavie e Brian MacWhinney. 2005. Automatic measurement of syntactic
development in child language. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics (ACL 05), pagine 197–204, Ann Arbor (Michigan, USA).

Schwarm, Sarah E. e Mari Ostendorf. 2005. Reading level assessment using support vector
machines and statistical language models. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics (ACL 05), pagine 523–530, Ann Arbor (Michigan, USA).

Vu, Thuy, Ai T. Aw e Min Zhang. 2008. Term Extraction Through Unithood and Termhood
Unification. In Proceedings of the Third International Joint Conference on Natural Language
Processing, pagine 631–636, Hyderabad (India).

123



 
 
 
 

© 2015 Associazione Italiana di Linguistica Computazionale 

CLaSSES: a New Digital Resource for Latin 
Epigraphy 

Irene De Felice* 
Università di Pisa 
 

Margherita Donati§ 
Università di Pisa 

Giovanna Marotta† 
Università di Pisa 

 

 
 
 
CLaSSES (Corpus for Latin Sociolinguistic Studies on Epigraphic textS) is an annotated 
corpus aimed at (socio)linguistic research on Latin inscriptions. Provided with linguistic, 
extra- and meta-linguistic features, it can be used to perform quantitative and qualitative 
variationist analyses on Latin epigraphic texts. In particular, it allows the user to analyze 
spelling (and possibly phonetic-phonological) variants and to interpret them with reference 
to the dating, the provenance place, and the type of the texts. This paper presents the first 
macro-section of CLaSSES, focused on inscriptions of the archaic and early periods 
(CLaSSES I). 

1. Introduction1 

This paper presents CLaSSES I, the first macro-section of CLaSSES (Corpus for 
Latin Sociolinguistic Studies on Epigraphic textS), an epigraphic corpus built for 
variationist studies on Latin inscriptions. This resource was developed within a 
research project devoted to sociolinguistic variation and identity dynamics in the 
Latin language (for further details on the project, see Donati et al. in press; Marotta 
in press).  

In the first section of the paper, some of the digital resources available for Latin 
epigraphy will be briefly introduced, then the most important aspects of 
innovation of CLaSSES will be highlighted (§ 2). The following section will address 
the current debate about the role played by epigraphic texts as a source of 
evidence for linguistic variation within dead languages, as well as the theoretical 
grounds for variationist research on epigraphic Latin (§ 3). The core part of the 
paper describes the sources of our corpus and the linguistic, meta- and extra-
linguistic annotation conducted (§ 4); some results of such annotation are also 
reported (§ 5). Finally, the last section will draw some conclusions and will sketch 
the future directions of our work (§ 6). 
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2. Digital resources for Latin inscriptions 

The available open-access digital resources for Latin epigraphy include, at present, 
some important databases (cf. Feraudi-Gruénais 2010; Elliott 2015). The Epigraphic 
Database Clauss-Slaby (EDCS)2 is the most extensive online resource and records 
almost all Latin inscriptions (to date, 735.664 sets of data for 491.190 inscriptions 
from 3.500 publications), together with a very large number of pictures (so far, 
98.897). It allows simple as well as combined queries, by publication, Roman 
province, place, and specific terms (possibly by using boolean operators and 
simple regular expressions); in addition, users can search also for misspelled 
words. The text of the inscriptions is presented without abbreviations and, when 
possible, in its complete form. 

Another very useful online resource is the Epigraphic Database Roma (EDR);3 
it is part of the Electronic Archive for Greek and Latin Epigraphy (EAGLE),4 an 
international network of epigraphic databases aiming to provide an open-access 
digital version of all published Greek and Latin inscriptions up to the 7th century 
AD. The main purpose of EDR is to collect all inscriptions from Rome and Italy, 
including Sardinia and Sicily (with the exception of Christian inscriptions of 
Rome). Besides the information about the content of the inscriptions, EDR also 
provides information about the writing support (e.g. typology, material, 
dimension) and a wide-ranging bibliography; often, also images and photographs 
are supplied (Panciera 2013; Caldelli et al. 2014). To date, EDR material includes 
70294 inscriptions and 42022 photographs. Through the online query interface, the 
user can perform a number of simple or combined searches, through the following 
sections: text (words or groups of letters, possibly with boolean operators 
AND/OR), place of provenance, date, type of object, material, size, preservation 
condition (intact or fragmentary texts), writing technique, language (e.g. Greek, 
Latin, Greek - Latin bilingual), type of inscription, social role of people mentioned, 
edition (Evangelisti 2010).  

Two other components of EAGLE well worth mentioning are the 
Epigraphische Datenbank Heidelberg (EDH),5 which mostly includes Latin or 
bilingual (Greek - Latin) inscriptions of provinces of the Roman empire, and the 
Epigraphic Database Bari (EDB),6 which collects Christian inscriptions of Rome 
from the 3rd to the 8th century AD. 

Some electronic resources of utility are also made freely available by the 
Corpus Inscriptionum Latinarum (CIL) research centre, in particular the 
Archivium Corporis Electronicum database (a collection of bibliographical 
references, squeezes, and photographs), the word indices to a few CIL volumes, 
and the concordances (that link inscription numbers adopted in early editions to 
those adopted in the CIL volumes).7 

For what regards the representation of epigraphic or papyrological texts in 
digital form, the international and collaborative project EpiDoc (Epigraphic 
Documents),8 which involves a large community of scholars working on Greek 
and Latin inscriptions (cf. Bodard 2010), provides tools and guidelines for the 
encoding of editions of ancient documents in XML, the Extensible Markup 
Language. EpiDoc adopts a subset of the XML defined by the Text Encoding 

                                                        
2 http://www.manfredclauss.de/gb/index.html. 
3 http://www.edr-edr.it/English/index_en.php. 
4 http://www.eagle-network.eu. 
5 http://www.uni-heidelberg.de/institute/sonst/adw/edh. 
6 http://www.edb.uniba.it. 
7 All these resources are accessible from the website http://cil.bbaw.de. 
8 http://sourceforge.net/p/epidoc/wiki/Home/. 
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Initiative’s (TEI) standard for the digital representation of texts, which is now 
widely used in the humanities. This flexible system allows not only to transcribe a 
Greek or Latin text, but also, for instance, to encode its translation, description, 
and other pieces of information such as dating, history of the inscription, 
bibliography, and the object on which the text is written. At the moment, we 
decided not to follow the EpiDoc guidelines, due to the current aims of the project. 
However, we do not exclude a conversion of our existing corpus in the XML 
interchange format in the future. 

Although the current state-of-the-art digital resources for Latin inscriptions 
briefly presented here collect a copious number of epigraphic texts and often 
provide useful extra-linguistic data, such as provenance place, dating, material, 
etc., they do not allow researchers to directly access specific information about 
relevant linguistic variation phenomena. They do not satisfactorily meet the needs 
of the linguist to study Latin epigraphic texts from a variationist perspective. In 
order to systematically address the massive graphic and linguistic variation 
observable in Latin inscriptions, a specific tool is necessary. We argue that the 
corpus CLaSSES is a new and useful resource, since it consists not only of raw 
epigraphic texts, but also of linguistic information about specific spelling variants 
that can be regarded as clues for phonetic-phonological (and morpho-
phonological) variation (cf. § 4). 

3. Studying variation in Latin through inscriptions 

There is a current debate9 on whether inscriptions can provide direct evidence for 
actual linguistic variation in Latin. In other words, can epigraphic texts be 
regarded as primary and reliable sources for reconstructing variation dynamics 
related to social strata, different language registers, and geographic variability? It 
is obviously true that inscriptions are the only direct evidence left by antiquity 
(although they can be influenced by literary uses, writers’ education, and many 
other factors), since every other kind of written text, even comedy or the so-called 
“vulgar” texts, is necessarily mediated by philological and manuscript tradition. In 
this sense, inscriptions are likely to keep record of linguistic variation. However, 
the story is not that simple. 

As Herman (1985) points out, the debate on the evaluation of late or “vulgar” 
inscriptions as linguistically representative texts is ancient and alternates between 
approaches that are either totally skeptical or too optimistic. Herman argues for a 
critical approach (1978b, 1985): epigraphic texts are fundamental sources for 
studying variation phenomena, provided that scholars take into account the issues 
related to their philological, paleographic, archaeological and historical 
interpretation, as well as the complex relationship between speech and writing. He 
states “mon article [...] veut sans doute constituer une mise en garde à l’adresse de 
ceux qui espèrent entrevoir grâce aux inscriptions [...] de nettes différences 
dialectales dans le latin des provinces de l’Empire, il tend cependant à prouver, en 
même temps, que les données épigraphiques, analysées avec critique et soin, 
correspondent bien à la réalité d’un état de langue déterminé et permettent par 
conséquent de suivre, de province en province, le cheminement inégal des 
innovations” (1985: 207). However, Herman’s fundamental studies on Latin 
demonstrate that epigraphic texts are actually fruitful for studying linguistic 
variation (Herman 1970, 1978a, 1978b, 1982, 1987, 2000, among others; see also 
Loporcaro 2011a, 2011b).  

                                                        
9 We just touch on this topic; for further discussion see Donati et al. in press; Marotta 2015, in press. 
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On the other hand, Adams (2003, 2007, 2013) limits the role of the inscriptions 
as a source for direct evidence of the spoken language and linguistic varieties of 
Latin. He argues that one can never be sure whether the variants found in 
inscriptions reflect the actual pronunciation, or are just misspellings or archaisms: 
only the critical evaluation of deviant spellings together with metalinguistic data, 
such as those provided by grammarians and authors, can ensure that these 
spellings actually reflect a phonetic reality. Moreover, even if deviant spellings can 
be recognized as reflecting speech, ascribing it to a given social class or level is a 
further step that needs to be confirmed, again, by grammarians, rhetors, and 
literary authors. Adams states that “certain misspellings are so frequent that there 
can be no doubt that they reflect the state of the language. Cases in point are the 
omission of -m and the writing of ae as e. But the state of what varieties of the 
language? Those spoken by a restricted educational/social class, or those spoken 
by the majority of the population? This is a question that cannot be answered 
merely from an examination of texts and their misspellings or absence thereof, 
because good spellers will stick to traditional spellings whether they are an 
accurate reflection of their own speech or not. If, roughly speaking, we are to place 
the pronunciation lying behind a misspelling in a particular social class, we need 
additional evidence, such as remarks by grammarians or other speakers” (2013: 33-
34). So, in Adams’ approach to Latin sociolects, grammarians and their remarks 
occupy a very prominent place. 

In our opinion, epigraphic texts can be regarded as a fundamental source for 
studying variation in Latin, provided that one adopts a critical approach. This 
position is shared by several scholars, who in recent works highlight the relevance 
of the epigraphic data (Consani in press; De Angelis in press; Kruschwitz 2015; 
Marotta 2015, in press; Rovai 2015). Nevertheless, the critical points raised by 
Adams cannot be ignored.   

Furthermore, sociolinguistic variation of Latin in Rome and the Empire is a 
promising research area (Adams et al. 2002; Adams 2003, 2007, 2013; Biville et al. 
2008; Dickey and Chahoud 2010; Rochette 1997). From the seminal work by 
Campanile (1971), many scholars highlight that sociolinguistic categories and 
methods can be usefully applied to ancient and dead languages (Giacalone Ramat 
2000; Lazzeroni 1984; Molinelli 2006; Vineis 1984, 1993), even if cautiously, since 
ancient languages are corpus languages10 and we are forced to rely on written 
sources only (Cuzzolin and Haverling 2009; Giacalone Ramat 2000; Winter 1998).  

Assuming this methodological perspective, our empirical analysis of Latin 
epigraphic texts is focused on identifying and classifying specific spelling variants, 
which can be regarded as clues for variation also at the phonetic-phonological, and 
consequently morpho-phonological level. Being aware of the debate on the 
reliability of inscriptions currently ongoing, we intend to investigate whether it is 
possible to find out relevant evidence for sociolinguistic variation in epigraphic 
Latin via the integration of the modern quantitative and correlative sociolinguistics 
with a corpus-based approach. Since, at present, there is a lack of digital resources 
devoted to this particular kind of research (cf. § 2), our first step was the creation 
of an original resource for studying Latin epigraphic texts, which will be described 
in what follows. 

                                                        
10 A corpus language can be defined as a language “known only through written documents” (Clackson 

2011: 2). 
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4. Building CLaSSES I 

4.1. Materials 

As a matter of fact, Latin inscriptions of the archaic and early periods are 
characterized by a wide array of variation in spelling that may well correspond to 
a variation at the linguistic level as well. In order to analyze epigraphic texts from 
a variationist perspective, it is methodologically necessary to compare the attested 
forms with a fixed point of reference, which can be identified in Classical Latin. In 
our analysis of the inscriptions of the archaic and early periods (macro-section 
CLaSSES I), we classified as “non-classical” those forms, attested mainly in the 
archaic and early periods, that do not belong to the tradition of Classical Latin.11 
Therefore, in CLaSSES I we avoid terms such as “non-standard” or “substandard”, 
currently in use in the scientific literature. For example, in CIL I2 8 (L CORNELIO L F 
SCIPIO AIDILES COSOL CESOR), CORNELIO is identified as a non-classical nominative 
form for the classical CORNELIUS. Indeed, identifying non-classical forms is not a 
trivial operation for every chronological phase of Latin, in particular for the 
archaic (7th century BC - ca. 240 BC) and the early (ca. 240 BC - ca. 90 BC) periods. 
A Latin linguistic and literary standard gradually emerges between the second 
half of the 3rd century BC, when literature traditionally begins, and the 1st century 
BC, when Cicero makes explicit the Latin linguistic norm in his rhetorical works 
(Clackson and Horrocks 2007; Cuzzolin and Haverling 2009; Mancini 2005, 2006).12  

CLaSSES I includes inscriptions of the archaic and early periods. Inscriptions 
are from the Corpus Inscriptionum Latinarum (CIL), the main and most 
comprehensive source for Latin epigraphy research. Inscriptions selected for this 
macro-section of our corpus are dated from 350 to ca. 150 BC, with most of them 
falling into the 3rd century BC. The volumes of the CIL that cover this 
chronological segment were systematically examined: CIL I² Pars II, fasc. I, section 
Inscriptiones vetustissimae (Lommatzsch 1918); CIL I² Pars II, fasc. II, Addenda Nummi 
Indices, section Addenda ad inscriptiones vetustissimas (Lommatzsch 1931); CIL I² Pars 
II, fasc. III, Addenda altera Indices, section Addenda ad inscriptiones vetustissimas 
(Lommatzsch 1943); CIL I² Pars II, fasc. IV, Addenda tertia, section Addenda ad 
inscriptiones vetustissimas (Degrassi and Krummrey 1986). It is worth noting that 
the texts offered by the CIL were also revised and checked by means of the 
available philological resources for Archaic Latin epigraphy (Warmington 1940; 
Degrassi 1957-1963; Wachter 1987), in order to guarantee the most reliable and 
updated philological accuracy. 

Moreover, it is noteworthy that within the vast quantity of epigraphic texts 
available for this phase of Latin not every inscription is significant for linguistic 
studies. As a consequence, the following texts have been excluded: 1) legal texts, 
since they are generally prone to archaisms; 2) too short (single letters, initials) or 
fragmentary inscriptions; 3) inscriptions from the necropolis of Praeneste, as they 
contain only anthroponyms in nominative form. 

                                                        
11 For a more detailed discussion of this term, see Donati et al. in press. 
12 The standard is based on the Roman variety of Latin (Clackson and Horrocks 2007), first developed in 

texts written by a few authors of high repute and later transmitted by grammarians (Cuzzolin and 
Haverling 2009); however, standardization is not only a literary operation, but it is also developed in 
connection with (linguistic) politics and the process of codification of the right (Poccetti et al. 1999). Once 
standardized, these forms of written Latin changed very little throughout antiquity and the Middle Ages. 
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4.2. Tokenization and lemmatization 

CLaSSES I includes 386 inscriptions, for a total number of 1869 words. The entire 
collected corpus was tokenized and an index was created, so that each token of the 
corpus is univocally associated to a token-ID containing the CIL volume, the 
number of the inscription and the position in which the token occurs within the 
inscription. We intend tokens as character sequences without spaces. We count 
among tokens lacunae as well (i.e. gaps in the inscription identified by the string 
“[…]”), since they occupy a specific position within the text, and they actually exist 
in its critical edition.  

Each token has also been manually lemmatized, when possible. For this 
operation, we mainly relied upon the Oxford Latin Dictionary. 

4.3. Extra- and meta-linguistic data 

Each epigraphic text of CLaSSES I was enriched with extra-linguistic information, 
i.e. related to its place of provenance and dating, and meta-linguistic information, 
i.e. related to the text type. In particular, we identified five text types, largely 
following the traditional classification by CIL and Warmington (1940); however, 
we decided to further distinguish, within the group of the inscriptions 
traditionally classified as tituli sacri, between tituli sacri privati and tituli sacri publici 
(for details, see Donati 2015): 

a. tituli honorarii (n. 18), i.e. inscriptions celebrating public people and 
inscriptions on public monuments (e.g. CIL I2 363 L RAHIO L F C[...] AIDILES 
[D]E[DERE]); 

b. tituli sepulcrales (n. 26), i.e. epitaphs and memorial texts (e.g. CIL I2 52 C 
FOURI M F); 

c. instrumenta domestica (n. 246), i.e. inscriptions on domestic tools (e.g. CIL I2 
441 BELOLAI POCOLOM); 

d. tituli sacri privati (n. 82), i.e. votive inscriptions offered by private 
individuals or brotherhoods (e.g. CIL I2 384 L OPIO C L APOLENE DONO DED 
MERETO); 

e. tituli sacri publici (n. 14), i.e. votive inscriptions offered by people holding 
public offices or whole communities (e.g. CIL I2 395 A CERVIO A F COSOL 
DEDICAVIT). 

As an example of the extra- and meta-linguistic information included in 
CLaSSES I, in CIL I2 45 DIANA MERETO NOUTRIX PAPERIA the word MERETO is 
identified by the token-ID CIL-I2-45/2, while the inscription CIL-I2-45 is associated 
to the following data: place of provenance Gabii, dating 250 - 200 BC, text type 
tituli sacri privati.  

In order to account for the rich and manifold linguistic material of the 
inscriptions included in CLaSSES I, each word of the corpus is also classified 
according to different parameters, as the next sections illustrate. The criteria 
adopted for the annotation were jointly discussed and the manual annotation was 
performed by two annotators, who constantly worked in parallel. Moreover, each 
one of them also checked a sample of the annotation made by the other one. 
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4.4. Graphic form annotation 

The graphic forms occurring in epigraphic texts are of different kinds, mainly due 
to the conservation status of the writing support. Therefore, we make a distinction 
between the following types: 

a. complete words (e.g. CIL I2 45 DIANA); 
b. abbreviations, i.e. every kind of shortening, including personal name 

initials (e.g. CIL I2 46 DON for DONUM); 
c. incomplete words, i.e. words partly integrated by editors (e.g. CIL I2 448 

ME[NERVAE); 
d. words completely integrated by editors (e.g. CIL I2 2875c [LAPIS]); 
e. misspellings (e.g. CIL I2 550 CUDIDO for CUPIDO);13 
f. uncertain words, i.e. words that cannot be interpreted, not even in their 

graphical form (e.g. CIL I2 59 STRIANDO); 
g. numbers; 
h. lacunae. 

4.5. Language annotation 

Since Latin archaic inscriptions sometimes include foreign words, we distinguish 
Latin words, which constitute the largest part of the corpus, from words belonging 
to other languages:14 

a. Greek (e.g. CIL I2 565 DOXA); 
b. Oscan (e.g. CIL I2 394 BRAT); 
c. Umbrian (e.g. CIL I2 2873 NUMESIER); 
d. Etruscan (e.g. CIL I2 554 MELERPANTA);  
e. hybrid, for mixed forms (e.g. CIL I2 553 ALIXENTROM); 
f. unknown, for words of uncertain origin (e.g. CIL I2 576 VIET). 
 
 

4.6. Annotation of non-classical variants  

The core part of the annotation phase, which provides the corpus with a rich set of 
qualitative data, consists of a linguistic analysis of CLaSSES I.15 The two annotators 
manually retrieved all the non-classical forms in the corpus (tot. 690), then they 
also associated them to their corresponding classical form, e.g. nom. sg. CORNELIO 

                                                        
13 Misspellings are mistyped words, i.e. words that are written in a different way with respect to their 

Classical form for an error of the stone-cutter. 
14 Obviously, lacunae are excluded from this classification. 
15 For textual interpretation of inscriptions, we mainly referred to the information included within CIL, as 

well as to Warmington 1940; Degrassi 1957-1963; Wachter 1987. 
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(non-classical) - CORNELIUS (classical). Uncertain cases were discussed by the 
annotators to achieve consensus. 

All non-classical forms were then classified according to the type of variation 
phenomena that distinguish them from the corresponding classical equivalents. 
Variation phenomena may regard vowels, consonants, as well as morpho-
phonology (i.e. when vocalic and consonantal phenomena occur in morphological 
endings). For instance, the nominative CONSOL (CIL I2 17) shows a vocalic 
phenomenon, because it deviates from the standard CONSUL for the vowel 
alternation <o>-<u>. 

a. Vowels. Among the phenomena related to vowels, we distinguish the 
followings: alternations (CIL I2 2909 MENERVA for MINERVAE; CIL I2 560a 
PISCIM for PISCEM); gemination (CIL I2 365 VOOTUM for VOTUM); syncope 
(CIL I2 37 VICESMA for VICESIMA); epenthesis (CIL I2 59 MAGISTERE for 
MAGISTRI); monophthongization (CIL I2 376 DIANE for DIANAE); archaic 
spellings of diphthongs (CIL I2 397 FORTUNAI for FORTUNAE). 

b. Consonants. Among the phenomena related to consonants, we distinguish 
the followings: final consonant deletion (CIL I2 8 CORNELIO for CORNELIUS); 
nasal deletion within consonant clusters (CIL I2 8 COSOL for CONSUL; CIL I2 
560c COFECI for CONFECI); assimilation (CIL I2 7 OPSIDESQUE for 
OBSIDESQUE); gemination (CIL I2 16 [P]AULLA for PAULA); degemination 
(CIL I2 563 APOLO for APOLLO); voice alternations (CIL I2 462a ECO for EGO; 
CIL I2 389 PAGIO for PACIUS); deaspiration (CIL I2 555 TASEOS for THASIUS). 
Some of these phenomena are especially relevant in the current discussion 
about sociolinguistic variation in Latin, namely vowel alternations, 
monophthongization, synchope, final -s and -m deletion (as already 
discussed in a body of works; cf. among others Adams 2013; Benedetti and 
Marotta 2014; Campanile 1971; Herman 1987; Leumann 1977; Loporcaro 
2011a, 2011b; Marotta 2015, in press; Pulgram 1975; Vineis 1984; Weiss 
2009). 

c. Morpho-phonology. If a given variant occurs in a morpho-phonological 
position (typically, in the word ending), then an additional level of 
annotation is added, which keeps track of the particular ending attested. 
For instance, among the most frequent phenomena annotated, we 
highlight the –a ending of the dative singular of the first declension (CIL I2 
43 DIANA for DIANAE); the –os and -o endings of the nominative singular of 
the second declension (CIL I2 406b CANOLEIOS and CIL I2 408 CANOLEIO for 
CANOLEIUS); the –om ending of the accusative singular of the second 
declension (CIL I2 2486a DONOM for DONUM); and the –et ending of the 3rd 
person of the perfect (CIL I2 2867 DEDET for DEDIT). 

This fine-grained annotation creates the prerequisites for the evaluation of the 
statistical incidence of each kind of non-classical variant, as well as to perform 
cross-queries taking into account text type, dating, and place of provenance.  

5. Results 

We can now present the results of the annotation conducted on CLaSSES I. As 
Table 1 shows, the text type most represented in the corpus is the instrumentum 
domesticum, with 246 epigraphic texts (726 words), followed by 82 inscriptions 
classified as tituli sacri privati (523 words), 26 inscriptions classified as tituli 
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sepulcrales (310 words), 18 inscriptions classified as tituli honorarii (182 words), and 
finally 14 texts pertaining to the tituli sacri publici category (128 words). 

Table 1  
Classification of the 1869 words constituting CLaSSES I according to which text type they 
pertain. 

 
For what regards the annotation of a word’s graphic form (Table 2), only 

54.4% of the words constituting the corpus are complete, whereas 30% are 
abbreviated (most of these forms stand for proper nouns, such as C for GAIUS or L 
for LUCIUS), and 8.2% are incomplete. Moreover, 3.3% of the words are missing, 
either because the editors classified them as lacunae, or because they totally 
integrated them; 3% are uncertain and cannot be interpreted. Misspellings and 
numbers constitute the minor part of the corpus. 

Table 2 
Classification of the 1869 words constituting CLaSSES I according to their graphic form. 

Graphic form 
complete abbreviat. incomplete integrated misspelling uncertain number (lacunae) 

1017 560 153 28 12 56 9 34 
54.4% 30% 8.2% 1.5% 0.6% 3% 0.5% 1.8% 

 
As Table 3 shows, Latin is the language most represented in the corpus (93.5% 

of the words), whereas only 4.7% of the words have a different origin.  
 

Table 3 
Classification of the 1869 words constituting CLaSSES I with regard to their language. 

Language 
Latin Greek Oscan Umbrian Etruscan hybrid unknown (lacunae) 
1748 11 12 3 9 17 35 34 

93.5% 0.6% 0.6% 0.2% 0.5% 0.9% 1.9% 1.8% 

6. Conclusions and future directions 

CLaSSES I is a corpus that allows quantitative and qualitative analysis on 
graphemic variation occurring in Latin inscriptions, satisfying basic requirements 
for grounded and systematic linguistic studies. It is annotated with linguistic, 
extra- and meta-linguistic features, which permit specific cross-queries on the text, 
also considering the dating, the geographic origin, and the type of the inscription. 

Text type 
instr. domestica tit. sacri privati tit. sepulcrales tit. honorarii tit. sacri publici 

726 523 310 182 128 
38.9% 28% 16.6% 9.7% 6.8% 
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As we have illustrated in the previous sections, the initial hypothesis in our 
project is that, given the wide array of variation detectable in archaic and early 
Latin inscriptions, sociolinguistic aspects possibly emerging may be highlighted 
by identifying and classifying the occurrences of non-classical variants. Even if the 
search for non-classical forms in Archaic and Early Latin might seem anachronistic 
in some way, this choice is based on two fundamental aspects. First, many 
phenomena occurring in these forms seem to represent the basis for diachronic 
developments occurring from Late Latin to the Romance languages, thus revealing 
some continuity at least at some (sociolinguistic?) level from Early to Late Latin 
(this point is not uncontroversial, see e.g. Adams 2013: 8). Second, different 
spellings in any case provide evidence for orthographic - and possibly 
phonological - variation within archaic inscriptions, thus presumably pointing to 
different levels in the diasystem. 

There are a number of case studies that have already been conducted on 
CLaSSES I. For instance, the analysis of the distribution of non-classical and 
classical forms, presented in Donati et al. (in press), confirms in quantitative terms 
that the linguistic standard is not yet established in the chronological period 
considered in CLaSSES I. Marotta (2015) analyzes vowel alternations: the spellings 
<e> and <o>, alternating with <i> and <u>, are interpreted as possible clues for 
the existence of a phonological opposition grounded on vowel quality rather than 
vowel quantity, at least at some level of the Latin diasystem. In Donati (2015), the 
possible correlation between the distribution of non-classical variants and 
diaphasic factors related to the type of text are analyzed, as well as the distribution 
of non-classical variation phenomena in vowels and consonants.  

Our primary current aim is to build and develop other sections of CLaSSES, by 
using the same annotation criteria already adopted for CLaSSES I and described 
above (cf. § 4.2 - § 4.6). In particular, two macro-sections are now in progress, 
CLaSSES II and CLaSSES III. CLaSSES II includes inscriptions of the period 150 - 
50 BC, whereas CLaSSES III is focused on Classical Latin, i.e. 50 BC - 50 AD. 
Moreover, we plan to add a morphological layer of annotation to the lemmatized 
corpus. This operation will provide the word tokens with information related to 
morphological properties, such as the part of speech (PoS), and possibly the 
morphological categories (case, number, tense, person, etc.). Furthermore, given 
the high frequency of proper names in epigraphic texts, we also intend to annotate 
the named entities.  

Finally, all the data collected will be the input for the creation of a database 
available through a web interface in the near future. 
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