In this volume, we collect the reports of the tasks’ organisers and of the participants to all of the EVALITA 2016’s tasks, which are the following: ArtiPhone - Articulatory Phone Recognition; FactA - Event Factuality Annotation>; NEEL-IT - Named Entity rEcognition and Linking in Italian Tweets>; PoSTWITA - POS tagging for Italian Social Media Texts; QA4FAQ - Question Answering for Frequently Asked Questions; SENTIPOLC - SENTIment POLarity Classification. Notice that the volume does not include reports related to the IBM Watson Services Challenge organised by IBM Italy, but information can be found at http://www.evalita.it/2016/tasks/ibm-challenge. Before the task and participant reports, we also include an overview to the campaign that describes the tasks in more detail, provides figures on the participants, and, especially, highlights the innovations introduced at this year’s edition. An additional report presents a reflection on the outcome of two questionnaires filled by past participants and organisers of EVALITA, and of the panel “Raising Interest and Collecting Suggestions on the EVALITA Evaluation Campaign” held at CLIC-it 2015.
anno di pubblicazione 2016
pp. 218
ISBN pdf 9788899982096
DOI 10.4000/books.aaccademia.1899
EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for the Italian language: since 2007 shared tasks have been proposed covering the analysis of both written and spoken language with the aim of enhancing the development and dissemination of resources and technologies for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it/) and it is supported by the NLP Special Interest Group of the Italian Association for Artificial Intelligence (AI*IA, http://www.aixia.it/) and by the Italian Association of Speech Science (AISV, http://www.aisv.it/).
In this volume, we collect the reports of the tasks’ organisers and of the participants to all of the EVALITA 2016’s tasks, which are the following: ArtiPhone - Articulatory Phone Recognition; FactA - Event Factuality Annotation; NEEL-IT - Named Entity rEcognition and Linking in Italian Tweets; PoSTWITA - POS tagging for Italian Social Media Texts; QA4FAQ - Question Answering for Frequently Asked Questions; SENTIPOLC - SENTIment POLarity Classification. Notice that the volume does not include reports related to the IBM Watson Services Challenge organised by IBM Italy, but information can be found at http://www.evalita.it/2016/tasks/ibm-challenge. Before the task and participant reports, we also include an overview to the campaign that describes the tasks in more detail, provides figures on the participants, and, especially, highlights the innovations introduced at this year’s edition. An additional report presents a reflection on the outcome of two questionnaires filled by past participants and organisers of EVALITA, and of the panel “Raising Interest and Collecting Suggestions on the EVALITA Evaluation Campaign” held at CLIC-it 2015.
University of Naples “Federico II”, Italy
University of Groningen, The Netherlands
Viviana Patti, University of Turin, Italy
Rachele Sprugnoli (Università degli Studi di Parma)
Preface to the EVALITA 2016 Proceedings |
|||||
pdf 260.3 KB |
EVALITA2016-00 | 0,00 € |
|
||
Basile-Cutugno-Nissim et al., EVALITA 2016: Overview of the 5th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian |
|||||
pdf 292.9 KB |
EVALITA2016-01 | 0,00 € |
|
||
Sprugnoli-Patti-Cutugno, Raising Interest and Collecting Suggestions on the EVALITA Evaluation Campaign |
|||||
pdf 624.2 KB |
EVALITA2016-02 | 0,00 € |
|
||
Daelemans, Keynote: Profiling the Personality of Social Media Users |
|||||
pdf 258.6 KB |
EVALITA2016-03 | 0,00 € |
|
||
Badino, The ArtiPhon Task at Evalita 2016 |
|||||
pdf 1.5 MB |
EVALITA2016-04 | 0,00 € |
|
||
Cosi, Phone Recognition Experiments on ArtiPhon with KALDI |
|||||
pdf 1.5 MB |
EVALITA2016-05 | 0,00 € |
|
||
Minard-Speranza-Caselli, The EVALITA 2016 Event Factuality Annotation Task (FactA) |
|||||
pdf 350.6 KB |
EVALITA2016-06 | 0,00 € |
|
||
Basile-Caputo-Gentile et al., Rizzo Overview of the EVALITA 2016 Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) Task |
|||||
pdf 353 KB |
EVALITA2016-07 | 0,00 € |
|
||
Attardi-Sartiano-Simi et al., Using Embeddings for Both Entity Recognition and Linking in Tweets |
|||||
pdf 1 MB |
EVALITA2016-08 | 0,00 € |
|
||
Cecchini-Fersini-Manchanda et al. UNIMIB@NEEL-IT : Named Entity Recognition and Linking of Italian Tweets |
|||||
pdf 408.9 KB |
EVALITA2016-09 | 0,00 € |
|
||
Corcoglioniti-Palmero Aprosio-Nechaev et al. MicroNeel: Combining NLP Tools to Perform Named Entity Detection and Linking on Microposts |
|||||
pdf 546.8 KB |
EVALITA2016-10 | 0,00 € |
|
||
Cozza-La Bruna-Di Noia, sisinflab: an ensemble of supervised and unsupervised strategies for the neel-it challenge at Evalita 2016 |
|||||
pdf 677.6 KB |
EVALITA2016-11 | 0,00 € |
|
||
Minard-Qwaider-Magnini, FBK-NLP at NEEL-IT: Active Learning for Domain Adaptation |
|||||
pdf 603.8 KB |
EVALITA2016-12 | 0,00 € |
|
||
Bosco-Tamburini-Bolioli et al., Overview of the EVALITA 2016 Part Of Speech on TWitter for ITAlian Task |
|||||
pdf 344.3 KB |
EVALITA2016-13 | 0,00 € |
|
||
Attardi-Simi, Character Embeddings PoS Tagger vs HMM Tagger for Tweets |
|||||
pdf 802.8 KB |
EVALITA2016-14 | 0,00 € |
|
||
Cimino-Dell’Orletta, Building the state-of-the-art in POS tagging of Italian Tweets |
|||||
pdf 338.9 KB |
EVALITA2016-15 | 0,00 € |
|
||
Horsmann-Zesch, Building a Social Media Adapted PoS Tagger Using FlexTag -- A Case Study on Italian Tweets |
|||||
pdf 310.9 KB |
EVALITA2016-16 | 0,00 € |
|
||
Paci, Mivoq Evalita 2016 PosTwITA tagger |
|||||
pdf 306.6 KB |
EVALITA2016-17 | 0,00 € |
|
||
Pakray-Majumder, NLP–NITMZ:Part-of-Speech Tagging on Italian Social Media Text using Hidden Markov Model |
|||||
pdf 323.2 KB |
EVALITA2016-18 | 0,00 € |
|
||
Plank-Nissim, When silver glitters more than gold: Bootstrapping an Italian part-of-speech tagger for Twitter |
|||||
pdf 449.5 KB |
EVALITA2016-19 | 0,00 € |
|
||
Stemle, bot.zen @ EVALITA 2016 - A minimally-deep learning PoS-tagger (trained for Italian Tweets) |
|||||
pdf 339.2 KB |
EVALITA2016-20 | 0,00 € |
|
||
Tamburini, A BiLSTM-CRF PoS-tagger for Italian tweets using morphological information |
|||||
pdf 371.3 KB |
EVALITA2016-21 | 0,00 € |
|
||
Caputo-de Gemmis-Lops et al., Overview of the EVALITA 2016 Question Answering for Frequently Asked Questions (QA4FAQ) Task |
|||||
pdf 490.1 KB |
EVALITA2016-22 | 0,00 € |
|
||
Bhardwaj-Pakray-Bentham et al., Question Answering System for Frequently Asked Questions |
|||||
pdf 506.5 KB |
EVALITA2016-23 | 0,00 € |
|
||
Fonseca-Magnolini-Feltracco et al., Tweaking Word Embeddings for FAQ Ranking |
|||||
pdf 357.1 KB |
EVALITA2016-24 | 0,00 € |
|
||
Pipitone-Tirone-Pirrone, ChiLab4It System in the QA4FAQ Competition |
|||||
pdf 409.6 KB |
EVALITA2016-25 | 0,00 € |
|
||
Barbieri-Basile-Croce et al., Overview of the Evalita 2016 SENTIment POLarity Classification Task |
|||||
pdf 411.5 KB |
EVALITA2016-26 | 0,00 € |
|
||
Attardi-Sartiano-Alzetta et al., Convolutional Neural Networks for Sentiment Analysis on Italian Tweets |
|||||
pdf 1003.1 KB |
EVALITA2016-27 | 0,00 € |
|
||
Buscaldi-Hernandez-Farias, IRADABE2: Lexicon Merging and Positional Features for Sentiment Analysis in Italian |
|||||
pdf 393.7 KB |
EVALITA2016-28 | 0,00 € |
|
||
Castellucci-Croce-R. Basili, Context-aware Convolutional Neural Networks for Twitter Sentiment Analysis in Italian |
|||||
pdf 444 KB |
EVALITA2016-29 | 0,00 € |
|
||
Cimino-Dell’Orletta, Tandem LSTM-SVM Approach for Sentiment Analysis |
|||||
pdf 347.1 KB |
EVALITA2016-30 | 0,00 € |
|
||
Covella-De Carolis-Ferilli et al., Lacam&Int@UNIBA at the EVALITA 2016-SENTIPOLC Task |
|||||
pdf 424.2 KB |
EVALITA2016-31 | 0,00 € |
|
||
Deriu-Cieliebak, Sentiment Analysis using Convolutional Neural Networks with Multi-Task Training and Distant Supervision on Italian Tweets |
|||||
pdf 435 KB |
EVALITA2016-32 | 0,00 € |
|
||
Di Rosa-Durante, Tweet2Check evaluation at Evalita Sentipolc 2016 |
|||||
pdf 337.5 KB |
EVALITA2016-33 | 0,00 € |
|
||
Frenda, Computational rule-based model for Irony Detection in Italian Tweets |
|||||
pdf 433 KB |
EVALITA2016-34 | 0,00 € |
|
||
Moctezuma-Tellez-Graff et al., On the performance of B4MSA on SENTIPOLC’16 |
|||||
pdf 328.7 KB |
EVALITA2016-35 | 0,00 € |
|
||
Passaro-Bondielli-Lenci, Exploiting Emotive Features for the Sentiment Polarity Classification of tweets |
|||||
pdf 356.2 KB |
EVALITA2016-36 | 0,00 € |
|
||
Russo-Monachini, Samskara. Minimal structural features for detecting subjectivity and polarity in Italian tweets |
|||||
pdf 314.9 KB |
EVALITA2016-37 | 0,00 € |
|